Cargando…
A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme
In fully-automatic radiomics model for predicting overall survival (OS) of glioblastoma multiforme (GBM) patients, the effect of image standardization parameters such as voxel size, quantization method and gray level on model reproducibility and prognostic performance are still unclear. In this stud...
Autores principales: | Li, Qihua, Bai, Hongmin, Chen, Yinsheng, Sun, Qiuchang, Liu, Lei, Zhou, Sijie, Wang, Guoliang, Liang, Chaofeng, Li, Zhi-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662697/ https://www.ncbi.nlm.nih.gov/pubmed/29085044 http://dx.doi.org/10.1038/s41598-017-14753-7 |
Ejemplares similares
-
Multiregional radiomics profiling from multiparametric MRI: Identifying an imaging predictor of IDH1 mutation status in glioblastoma
por: Li, Zhi‐Cheng, et al.
Publicado: (2018) -
A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme
por: Lao, Jiangwei, et al.
Publicado: (2017) -
Machine Learning Based on a Multiparametric and Multiregional Radiomics Signature Predicts Radiotherapeutic Response in Patients with Glioblastoma
por: Pan, Zi-Qi, et al.
Publicado: (2020) -
Single brain metastasis versus glioblastoma multiforme: a VOI-based multiparametric analysis for differential diagnosis
por: Romano, Andrea, et al.
Publicado: (2022) -
Glioblastoma Multiforme
por: Sheehan, Jonas M., et al.
Publicado: (2012)