Cargando…
A Computational Method of Defining Potential Biomarkers based on Differential Sub-Networks
Analyzing omics data from a network-based perspective can facilitate biomarker discovery. To improve disease diagnosis and identify prospective information indicating the onset of complex disease, a computational method for identifying potential biomarkers based on differential sub-networks (PB-DSN)...
Autores principales: | Huang, Xin, Lin, Xiaohui, Zeng, Jun, Wang, Lichao, Yin, Peiyuan, Zhou, Lina, Hu, Chunxiu, Yao, Weihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662748/ https://www.ncbi.nlm.nih.gov/pubmed/29085035 http://dx.doi.org/10.1038/s41598-017-14682-5 |
Ejemplares similares
-
A New Strategy for Analyzing Time-Series Data Using Dynamic Networks: Identifying Prospective Biomarkers of Hepatocellular Carcinoma
por: Huang, Xin, et al.
Publicado: (2016) -
Metabolomics Identifies Biomarker Pattern for Early Diagnosis of Hepatocellular Carcinoma: from Diethylnitrosamine Treated Rats to Patients
por: Zeng, Jun, et al.
Publicado: (2015) -
Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer
por: Li, Jia, et al.
Publicado: (2016) -
Discovery and validation of potential urinary biomarkers for bladder cancer diagnosis using a pseudotargeted GC-MS metabolomics method
por: Zhou, Yang, et al.
Publicado: (2017) -
Serum metabolome and targeted bile acid profiling reveals potential novel biomarkers for drug-induced liver injury
por: Ma, Zhenhua, et al.
Publicado: (2019)