Cargando…
Uninformative Biological Variability Elimination in Apple Soluble Solids Content Inspection by Using Fourier Transform Near-Infrared Spectroscopy Combined with Multivariate Analysis and Wavelength Selection Algorithm
Uninformative biological variability elimination methods were studied in the near-infrared calibration model for predicting the soluble solids content of apples. Four different preprocessing methods, namely, Savitzky-Golay smoothing, multiplicative scatter correction, standard normal variate, and me...
Autores principales: | Zhang, Lin, Zhang, Baohua, Zhou, Jun, Gu, Baoxing, Tian, Guangzhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662809/ https://www.ncbi.nlm.nih.gov/pubmed/29123938 http://dx.doi.org/10.1155/2017/2525147 |
Ejemplares similares
-
Exploring the feasibility of wavelength modulated near-infrared spectroscopy
por: Hebden, Jeremy C.
Publicado: (2020) -
Calibration of Near Infrared Spectroscopy of Apples with Different Fruit Sizes to Improve Soluble Solids Content Model Performance
por: Jiang, Xiaogang, et al.
Publicado: (2022) -
Nondestructive Testing of Pear Based on Fourier Near-Infrared Spectroscopy
por: Lu, Zhaohui, et al.
Publicado: (2022) -
Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy
por: Smith-Moritz, Andreia M, et al.
Publicado: (2011) -
Multivariate Calibration and Model Integrity for Wood Chemistry Using Fourier Transform Infrared Spectroscopy
por: Zhou, Chengfeng, et al.
Publicado: (2015)