Cargando…

Prescription Function Prediction Using Topic Model and Multilabel Classifiers

Determining a prescription's function is one of the challenging problems in Traditional Chinese Medicine (TCM). In past decades, TCM has been widely researched through various methods in computer science, but none concentrates on the prediction method for a new prescription's function. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lidong, Zhang, Yin, Zhang, Yun, Xu, Xiaodong, Cao, Shihua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662811/
https://www.ncbi.nlm.nih.gov/pubmed/29234434
http://dx.doi.org/10.1155/2017/8279109
Descripción
Sumario:Determining a prescription's function is one of the challenging problems in Traditional Chinese Medicine (TCM). In past decades, TCM has been widely researched through various methods in computer science, but none concentrates on the prediction method for a new prescription's function. In this study, two methods are presented concerning this issue. The first method is based on a novel supervised topic model named Label-Prescription-Herb (LPH), which incorporates herb-herb compatibility rules into learning process. The second method is based on multilabel classifiers built by TFIDF features and herbal attribute features. Experiments undertaken reveal that both methods perform well, but the multilabel classifiers slightly outperform LPH-based method. The prediction results can provide valuable information for new prescription discovery before clinical test.