Cargando…

Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes

[Image: see text] Conducting polymers show great promise as supercapacitor materials due to their high theoretical specific capacitance, low cost, toughness, and flexibility. Poor ion mobility, however, can render active material more than a few tens of nanometers from the surface inaccessible for c...

Descripción completa

Detalles Bibliográficos
Autores principales: Fong, Kara D., Wang, Tiesheng, Kim, Hyun-Kyung, Kumar, R. Vasant, Smoukov, Stoyan K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662927/
https://www.ncbi.nlm.nih.gov/pubmed/29104940
http://dx.doi.org/10.1021/acsenergylett.7b00466
_version_ 1783274736938123264
author Fong, Kara D.
Wang, Tiesheng
Kim, Hyun-Kyung
Kumar, R. Vasant
Smoukov, Stoyan K.
author_facet Fong, Kara D.
Wang, Tiesheng
Kim, Hyun-Kyung
Kumar, R. Vasant
Smoukov, Stoyan K.
author_sort Fong, Kara D.
collection PubMed
description [Image: see text] Conducting polymers show great promise as supercapacitor materials due to their high theoretical specific capacitance, low cost, toughness, and flexibility. Poor ion mobility, however, can render active material more than a few tens of nanometers from the surface inaccessible for charge storage, limiting performance. Here, we use semi-interpenetrating networks (sIPNs) of a pseudocapacitive polymer in an ionically conductive polymer matrix to decrease ion diffusion length scales and make virtually all of the active material accessible for charge storage. Our freestanding poly(3,4-ethylenedioxythiophene)/poly(ethylene oxide) (PEDOT/PEO) sIPN films yield simultaneous improvements in three crucial elements of supercapacitor performance: specific capacitance (182 F/g, a 70% increase over that of neat PEDOT), cycling stability (97.5% capacitance retention after 3000 cycles), and flexibility (the electrodes bend to a <200 μm radius of curvature without breaking). Our simple and controllable sIPN fabrication process presents a framework to develop a range of polymer-based interpenetrated materials for high-performance energy storage technologies.
format Online
Article
Text
id pubmed-5662927
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-56629272017-11-01 Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes Fong, Kara D. Wang, Tiesheng Kim, Hyun-Kyung Kumar, R. Vasant Smoukov, Stoyan K. ACS Energy Lett [Image: see text] Conducting polymers show great promise as supercapacitor materials due to their high theoretical specific capacitance, low cost, toughness, and flexibility. Poor ion mobility, however, can render active material more than a few tens of nanometers from the surface inaccessible for charge storage, limiting performance. Here, we use semi-interpenetrating networks (sIPNs) of a pseudocapacitive polymer in an ionically conductive polymer matrix to decrease ion diffusion length scales and make virtually all of the active material accessible for charge storage. Our freestanding poly(3,4-ethylenedioxythiophene)/poly(ethylene oxide) (PEDOT/PEO) sIPN films yield simultaneous improvements in three crucial elements of supercapacitor performance: specific capacitance (182 F/g, a 70% increase over that of neat PEDOT), cycling stability (97.5% capacitance retention after 3000 cycles), and flexibility (the electrodes bend to a <200 μm radius of curvature without breaking). Our simple and controllable sIPN fabrication process presents a framework to develop a range of polymer-based interpenetrated materials for high-performance energy storage technologies. American Chemical Society 2017-08-14 2017-09-08 /pmc/articles/PMC5662927/ /pubmed/29104940 http://dx.doi.org/10.1021/acsenergylett.7b00466 Text en Copyright © 2017 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Fong, Kara D.
Wang, Tiesheng
Kim, Hyun-Kyung
Kumar, R. Vasant
Smoukov, Stoyan K.
Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes
title Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes
title_full Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes
title_fullStr Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes
title_full_unstemmed Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes
title_short Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes
title_sort semi-interpenetrating polymer networks for enhanced supercapacitor electrodes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662927/
https://www.ncbi.nlm.nih.gov/pubmed/29104940
http://dx.doi.org/10.1021/acsenergylett.7b00466
work_keys_str_mv AT fongkarad semiinterpenetratingpolymernetworksforenhancedsupercapacitorelectrodes
AT wangtiesheng semiinterpenetratingpolymernetworksforenhancedsupercapacitorelectrodes
AT kimhyunkyung semiinterpenetratingpolymernetworksforenhancedsupercapacitorelectrodes
AT kumarrvasant semiinterpenetratingpolymernetworksforenhancedsupercapacitorelectrodes
AT smoukovstoyank semiinterpenetratingpolymernetworksforenhancedsupercapacitorelectrodes