Cargando…
Long short-term memory RNN for biomedical named entity recognition
BACKGROUND: Biomedical named entity recognition(BNER) is a crucial initial step of information extraction in biomedical domain. The task is typically modeled as a sequence labeling problem. Various machine learning algorithms, such as Conditional Random Fields (CRFs), have been successfully used for...
Autores principales: | Lyu, Chen, Chen, Bo, Ren, Yafeng, Ji, Donghong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663060/ https://www.ncbi.nlm.nih.gov/pubmed/29084508 http://dx.doi.org/10.1186/s12859-017-1868-5 |
Ejemplares similares
-
A multitask bi-directional RNN model for named entity recognition on Chinese electronic medical records
por: Chowdhury, Shanta, et al.
Publicado: (2018) -
Multitask learning for biomedical named entity recognition with cross-sharing structure
por: Wang, Xi, et al.
Publicado: (2019) -
Various criteria in the evaluation of biomedical named entity recognition
por: Tsai, Richard Tzong-Han, et al.
Publicado: (2006) -
Comparison of named entity recognition methodologies in biomedical documents
por: Song, Hye-Jeong, et al.
Publicado: (2018) -
Towards reliable named entity recognition in the biomedical domain
por: Giorgi, John M, et al.
Publicado: (2020)