Cargando…

Proteomic analysis of early salt stress responsive proteins in alfalfa roots and shoots

BACKGROUND: Alfalfa (Medicago sativa) is the most extensively cultivated forage legume in the world, and salinity stress is the most problematic environmental factors limiting alfalfa production. To evaluate alfalfa tissue variations in response to salt stress, comparative physiological and proteomi...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Junbo, Sun, Yan, Yang, Qingchuan, Tian, Hong, Zhang, Heshan, Liu, Yang, Chen, Mingxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663070/
https://www.ncbi.nlm.nih.gov/pubmed/29093645
http://dx.doi.org/10.1186/s12953-017-0127-z
Descripción
Sumario:BACKGROUND: Alfalfa (Medicago sativa) is the most extensively cultivated forage legume in the world, and salinity stress is the most problematic environmental factors limiting alfalfa production. To evaluate alfalfa tissue variations in response to salt stress, comparative physiological and proteomic analyses were made of salt responses in the roots and shoots of the alfalfa. METHOD: A two-dimensional gel electrophoresis (2-DE)-based proteomic technique was employed to identify the differentially abundant proteins (DAPs) from salt-treated alfalfa roots and shoots of the salt tolerance cultivars Zhongmu No 1 cultivar, which was subjected to a range of salt stress concentrations for 9 days. In parallel, REL, MAD and H(2)O(2) contents, and the activities of antioxidant enzymes of shoots and roots were determinand. RESULT: Twenty-seven spots in the shoots and 36 spots in the roots that exhibited showed significant abundance variations were identified by MALDI-TOF-TOF MS. These DAPs are mainly involved in the biological processes of photosynthesis, stress and defense, carbohydrate and energy metabolism, second metabolism, protein metabolism, transcriptional regulation, cell wall and cytoskeleton metabolism, ion transpor, signal transduction. In parallel, physiological data were correlated well with our proteomic results. It is worth emphasizing that some novel salt-responsive proteins were identified, such as CP12, pathogenesis-related protein 2, harvest-induced protein, isoliquiritigenin 2′-O-methyltransferase. qRT-PCR was used to study the gene expression levels of the four above-mentioned proteins; four patterns are consistent with those of induced protein. CONCLUSION: The primary mechanisms underlying the ability of alfalfa seedlings to tolerate salt stress were photosynthesis, detoxifying and antioxidant, secondary metabolism, and ion transport. And it also suggests that the different tissues responded to salt-stress in different ways.