Cargando…
Predicting local malaria exposure using a Lasso-based two-level cross validation algorithm
Recent studies have highlighted the importance of local environmental factors to determine the fine-scale heterogeneity of malaria transmission and exposure to the vector. In this work, we compare a classical GLM model with backward selection with different versions of an automatic LASSO-based algor...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663424/ https://www.ncbi.nlm.nih.gov/pubmed/29088280 http://dx.doi.org/10.1371/journal.pone.0187234 |
Sumario: | Recent studies have highlighted the importance of local environmental factors to determine the fine-scale heterogeneity of malaria transmission and exposure to the vector. In this work, we compare a classical GLM model with backward selection with different versions of an automatic LASSO-based algorithm with 2-level cross-validation aiming to build a predictive model of the space and time dependent individual exposure to the malaria vector, using entomological and environmental data from a cohort study in Benin. Although the GLM can outperform the LASSO model with appropriate engineering, the best model in terms of predictive power was found to be the LASSO-based model. Our approach can be adapted to different topics and may therefore be helpful to address prediction issues in other health sciences domains. |
---|