Cargando…
Downregulation of miR-199a-5p promotes prostate adeno-carcinoma progression through loss of its inhibition of HIF-1α
Hypoxia-inducible factor-1 alpha (HIF-1α) plays key roles in cell survival under both hypoxia and normoxia conditions. Regulation of HIF-1α is complex and involves numerous molecules and pathways, including post-transcriptional regulation by microRNAs (miRNAs). Although upregulation of HIF-1α has be...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663533/ https://www.ncbi.nlm.nih.gov/pubmed/29137361 http://dx.doi.org/10.18632/oncotarget.18315 |
Sumario: | Hypoxia-inducible factor-1 alpha (HIF-1α) plays key roles in cell survival under both hypoxia and normoxia conditions. Regulation of HIF-1α is complex and involves numerous molecules and pathways, including post-transcriptional regulation by microRNAs (miRNAs). Although upregulation of HIF-1α has been shown to promote prostate adenocarcinoma (PCa) progression, the mechanism by which miRNAs modulate HIF-1α in prostate cancer has not been clarified. Here, we show that miR-199a-5p is underexpressed in prostate adenocarcinoma. Artificial overexpression of miR-199a-5p decreased cell proliferation, motility, and tumor angiogenesis and increased apoptosis in PCa cell liness PC-3 and DU145 by directly targeting the 3’-untranslated region (UTR) of HIF-1α mRNA, which reduced HIF-1α levels as well as downstream genes transactivated by HIF-1α (such as VEGF, CXCR4, BNIP3 and BCL-xL). Abnormalities of miR-199a-HIF regulation may contribute significantly to PCa pathogenesis and progression. |
---|