Cargando…
Selective secretion of microRNAs from lung cancer cells via extracellular vesicles promotes CAMK1D-mediated tube formation in endothelial cells
Extracellular vesicles (EVs) are key signaling mediators between cancer cells and their supporting stroma, and regulate critical processes such as invasion, metastases, and angiogenesis. We have identified a subset of miRNAs (miR-142-3p, miR-143-3p, miR-145-5p, miR-150-5p, miR-223-3p, miR-451a, miR-...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663564/ https://www.ncbi.nlm.nih.gov/pubmed/29137392 http://dx.doi.org/10.18632/oncotarget.19996 |
_version_ | 1783274834051989504 |
---|---|
author | Lawson, James Dickman, Christopher MacLellan, Sara Towle, Rebecca Jabalee, James Lam, Stephen Garnis, Cathie |
author_facet | Lawson, James Dickman, Christopher MacLellan, Sara Towle, Rebecca Jabalee, James Lam, Stephen Garnis, Cathie |
author_sort | Lawson, James |
collection | PubMed |
description | Extracellular vesicles (EVs) are key signaling mediators between cancer cells and their supporting stroma, and regulate critical processes such as invasion, metastases, and angiogenesis. We have identified a subset of miRNAs (miR-142-3p, miR-143-3p, miR-145-5p, miR-150-5p, miR-223-3p, miR-451a, miR-486-5p, miR-605-5p) that are enriched in lung adenocarcinoma extracellular vesicles compared to the donor cells from which they were derived. Two well-known tumor suppressors, miR-143-3p and miR-145-5p, were also enriched in serum samples collected during surgery from blood vessels draining directly from lung adenocarcinoma tumor beds. Recently, both miRNAs were found to promote neoangiogenesis in endothelial cells in mouse models of lung adenocarcinoma through targeting of CAMK1D, an inhibitory kinase that can impair angiogenesis when over-expressed. We show that the transfer of miR-143-3p and miR-145-5p within extracellular vesicles from lung adenocarcinoma cells to endothelial cells reduces the levels of CAMK1D and increases tube formation by endothelial cells. This finding suggests that transfer of miRNAs within extracellular vesicles is a method of communication between cancer and endothelial cells which promotes angiogenesis while simultaneously removing tumor suppressive miRNAs within the tumor cells, thus driving tumorigenesis. |
format | Online Article Text |
id | pubmed-5663564 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-56635642017-11-13 Selective secretion of microRNAs from lung cancer cells via extracellular vesicles promotes CAMK1D-mediated tube formation in endothelial cells Lawson, James Dickman, Christopher MacLellan, Sara Towle, Rebecca Jabalee, James Lam, Stephen Garnis, Cathie Oncotarget Research Paper Extracellular vesicles (EVs) are key signaling mediators between cancer cells and their supporting stroma, and regulate critical processes such as invasion, metastases, and angiogenesis. We have identified a subset of miRNAs (miR-142-3p, miR-143-3p, miR-145-5p, miR-150-5p, miR-223-3p, miR-451a, miR-486-5p, miR-605-5p) that are enriched in lung adenocarcinoma extracellular vesicles compared to the donor cells from which they were derived. Two well-known tumor suppressors, miR-143-3p and miR-145-5p, were also enriched in serum samples collected during surgery from blood vessels draining directly from lung adenocarcinoma tumor beds. Recently, both miRNAs were found to promote neoangiogenesis in endothelial cells in mouse models of lung adenocarcinoma through targeting of CAMK1D, an inhibitory kinase that can impair angiogenesis when over-expressed. We show that the transfer of miR-143-3p and miR-145-5p within extracellular vesicles from lung adenocarcinoma cells to endothelial cells reduces the levels of CAMK1D and increases tube formation by endothelial cells. This finding suggests that transfer of miRNAs within extracellular vesicles is a method of communication between cancer and endothelial cells which promotes angiogenesis while simultaneously removing tumor suppressive miRNAs within the tumor cells, thus driving tumorigenesis. Impact Journals LLC 2017-08-07 /pmc/articles/PMC5663564/ /pubmed/29137392 http://dx.doi.org/10.18632/oncotarget.19996 Text en Copyright: © 2017 Lawson et al. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (http://creativecommons.org/licenses/by/3.0/) (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Lawson, James Dickman, Christopher MacLellan, Sara Towle, Rebecca Jabalee, James Lam, Stephen Garnis, Cathie Selective secretion of microRNAs from lung cancer cells via extracellular vesicles promotes CAMK1D-mediated tube formation in endothelial cells |
title | Selective secretion of microRNAs from lung cancer cells via extracellular vesicles promotes CAMK1D-mediated tube formation in endothelial cells |
title_full | Selective secretion of microRNAs from lung cancer cells via extracellular vesicles promotes CAMK1D-mediated tube formation in endothelial cells |
title_fullStr | Selective secretion of microRNAs from lung cancer cells via extracellular vesicles promotes CAMK1D-mediated tube formation in endothelial cells |
title_full_unstemmed | Selective secretion of microRNAs from lung cancer cells via extracellular vesicles promotes CAMK1D-mediated tube formation in endothelial cells |
title_short | Selective secretion of microRNAs from lung cancer cells via extracellular vesicles promotes CAMK1D-mediated tube formation in endothelial cells |
title_sort | selective secretion of micrornas from lung cancer cells via extracellular vesicles promotes camk1d-mediated tube formation in endothelial cells |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663564/ https://www.ncbi.nlm.nih.gov/pubmed/29137392 http://dx.doi.org/10.18632/oncotarget.19996 |
work_keys_str_mv | AT lawsonjames selectivesecretionofmicrornasfromlungcancercellsviaextracellularvesiclespromotescamk1dmediatedtubeformationinendothelialcells AT dickmanchristopher selectivesecretionofmicrornasfromlungcancercellsviaextracellularvesiclespromotescamk1dmediatedtubeformationinendothelialcells AT maclellansara selectivesecretionofmicrornasfromlungcancercellsviaextracellularvesiclespromotescamk1dmediatedtubeformationinendothelialcells AT towlerebecca selectivesecretionofmicrornasfromlungcancercellsviaextracellularvesiclespromotescamk1dmediatedtubeformationinendothelialcells AT jabaleejames selectivesecretionofmicrornasfromlungcancercellsviaextracellularvesiclespromotescamk1dmediatedtubeformationinendothelialcells AT lamstephen selectivesecretionofmicrornasfromlungcancercellsviaextracellularvesiclespromotescamk1dmediatedtubeformationinendothelialcells AT garniscathie selectivesecretionofmicrornasfromlungcancercellsviaextracellularvesiclespromotescamk1dmediatedtubeformationinendothelialcells |