Cargando…

A broadly tunable synthesis of linear α-olefins

The catalytic synthesis of linear α-olefins from ethylene is a technologically highly important reaction. A synthesis concept allowing the formation of selective products and various linear α-olefin product distributions with one catalyst system is highly desirable. Here, we describe a trimetallic c...

Descripción completa

Detalles Bibliográficos
Autores principales: Gollwitzer, Andreas, Dietel, Thomas, Kretschmer, Winfried P., Kempe, Rhett
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663737/
https://www.ncbi.nlm.nih.gov/pubmed/29089510
http://dx.doi.org/10.1038/s41467-017-01507-2
Descripción
Sumario:The catalytic synthesis of linear α-olefins from ethylene is a technologically highly important reaction. A synthesis concept allowing the formation of selective products and various linear α-olefin product distributions with one catalyst system is highly desirable. Here, we describe a trimetallic catalyst system (Y–Al–Ni) consisting of a rare earth metal polymerization catalyst which can mediate coordinative chain transfer to triethylaluminum combined with a simultaneously operating nickel β-hydride elimination/transfer catalyst. This nickel catalyst displaces the grown alkyl chains forming linear α-olefins and recycles the aluminum-based chain transfer agent. With one catalyst system, we can synthesize product spectra ranging from selective 1-butene formation to α-olefin distributions centered at 850 gmol(−1) with a low polydispersity. The key to this highly flexible linear α-olefin synthesis is the easy tuning of the rates of the Y and Ni catalysis independently of each other. The reaction is substoichiometric or formally catalytic regarding the chain transfer agent.