Cargando…

Decreased blood pressure associated with in-vehicle exposure to carbon monoxide in Korean volunteers

BACKGROUND: Carbon monoxide (CO) is one of the primary components of emissions from light-duty vehicles, and reportedly comprises 77% of all pollutants emitted in terms of concentration. Exposure to CO aggravates cardiovascular disease and causes other health disorders. The study was aimed to assess...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Geon-Woo, Bae, Mun-Joo, Yang, Ji-Yeon, Son, Jung-Woo, Cho, Jae-Lim, Lee, Sang-Gyu, Jang, Bo-Mi, Lee, Hyun-Woo, Lim, Jong-Soon, Shin, Dong-Chun, Lim, Young-Wook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664420/
https://www.ncbi.nlm.nih.gov/pubmed/29165122
http://dx.doi.org/10.1186/s12199-017-0622-y
Descripción
Sumario:BACKGROUND: Carbon monoxide (CO) is one of the primary components of emissions from light-duty vehicles, and reportedly comprises 77% of all pollutants emitted in terms of concentration. Exposure to CO aggravates cardiovascular disease and causes other health disorders. The study was aimed to assess the negative effects by injecting different amounts of CO concentration directly to human volunteers boarding in the car. METHODS: Human volunteers were exposed to CO concentrations of 0, 33.2, and 72.4 ppm, respectively during the first test and 0, 30.3, and 48.8 ppm respectively during the second test while seated in the car. The volunteers were exposed to each concentration for approximately 45 min. After exposure, blood pressure measurement, blood collection (carboxyhemoglobin [COHb] analysis), medical interview, echocardiography test, and cognitive reaction test were performed. RESULT: In patients who were exposed to a mean concentration of CO for 72.4 ± 1.4 ppm during the first exposure test and 48.8 ± 3.7 ppm during the second exposure test, the COHb level exceeded 2%. Moreover, the diastolic blood pressure was decreased while increasing in CO concentration after exposure. The medical interview findings showed that the degree of fatigue was increased and the degree of concentration was reduced when the exposed concentration of CO was increased. CONCLUSION: Although the study had a limited sample size, we found that even a low concentration of CO flowing into a car could have a negative influence on human health, such as change of blood pressure and degree of fatigue.