Cargando…
TasselNet: counting maize tassels in the wild via local counts regression network
BACKGROUND: Accurately counting maize tassels is important for monitoring the growth status of maize plants. This tedious task, however, is still mainly done by manual efforts. In the context of modern plant phenotyping, automating this task is required to meet the need of large-scale analysis of ge...
Autores principales: | Lu, Hao, Cao, Zhiguo, Xiao, Yang, Zhuang, Bohan, Shen, Chunhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664836/ https://www.ncbi.nlm.nih.gov/pubmed/29118821 http://dx.doi.org/10.1186/s13007-017-0224-0 |
Ejemplares similares
-
TasselNetv2: in-field counting of wheat spikes with context-augmented local regression networks
por: Xiong, Haipeng, et al.
Publicado: (2019) -
A Multiscale Point-Supervised Network for Counting Maize Tassels in the Wild
por: Zheng, Haoyu, et al.
Publicado: (2023) -
Maize tassels detection: a benchmark of the state of the art
por: Zou, Hongwei, et al.
Publicado: (2020) -
TasselLFANet: a novel lightweight multi-branch feature aggregation neural network for high-throughput image-based maize tassels detection and counting
por: Yu, Zhenghong, et al.
Publicado: (2023) -
TasselNetV2+: A Fast Implementation for High-Throughput Plant Counting From High-Resolution RGB Imagery
por: Lu, Hao, et al.
Publicado: (2020)