Cargando…
Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects
When small objects move in a scene, we keep them foveated with smooth pursuit eye movements. Although large objects such as people and animals are common, it is nonetheless unknown how we pursue them since they cannot be foveated. It might be that the brain calculates an object's centroid, and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665499/ https://www.ncbi.nlm.nih.gov/pubmed/29090315 http://dx.doi.org/10.1167/17.12.20 |
_version_ | 1783275158156345344 |
---|---|
author | Ma, Zheng Watamaniuk, Scott N. J. Heinen, Stephen J. |
author_facet | Ma, Zheng Watamaniuk, Scott N. J. Heinen, Stephen J. |
author_sort | Ma, Zheng |
collection | PubMed |
description | When small objects move in a scene, we keep them foveated with smooth pursuit eye movements. Although large objects such as people and animals are common, it is nonetheless unknown how we pursue them since they cannot be foveated. It might be that the brain calculates an object's centroid, and then centers the eyes on it during pursuit as a foveation mechanism might. Alternatively, the brain merely matches the velocity by motion integration. We test these alternatives with an illusory motion stimulus that translates at a speed different from its retinal motion. The stimulus was a Gabor array that translated at a fixed velocity, with component Gabors that drifted with motion consistent or inconsistent with the translation. Velocity matching predicts different pursuit behaviors across drift conditions, while centroid matching predicts no difference. We also tested whether pursuit can segregate and ignore irrelevant local drifts when motion and centroid information are consistent by surrounding the Gabors with solid frames. Finally, observers judged the global translational speed of the Gabors to determine whether smooth pursuit and motion perception share mechanisms. We found that consistent Gabor motion enhanced pursuit gain while inconsistent, opposite motion diminished it, drawing the eyes away from the center of the stimulus and supporting a motion-based pursuit drive. Catch-up saccades tended to counter the position offset, directing the eyes opposite to the deviation caused by the pursuit gain change. Surrounding the Gabors with visible frames canceled both the gain increase and the compensatory saccades. Perceived speed was modulated analogous to pursuit gain. The results suggest that smooth pursuit of large stimuli depends on the magnitude of integrated retinal motion information, not its retinal location, and that the position system might be unnecessary for generating smooth velocity to large pursuit targets. |
format | Online Article Text |
id | pubmed-5665499 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-56654992017-11-06 Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects Ma, Zheng Watamaniuk, Scott N. J. Heinen, Stephen J. J Vis Article When small objects move in a scene, we keep them foveated with smooth pursuit eye movements. Although large objects such as people and animals are common, it is nonetheless unknown how we pursue them since they cannot be foveated. It might be that the brain calculates an object's centroid, and then centers the eyes on it during pursuit as a foveation mechanism might. Alternatively, the brain merely matches the velocity by motion integration. We test these alternatives with an illusory motion stimulus that translates at a speed different from its retinal motion. The stimulus was a Gabor array that translated at a fixed velocity, with component Gabors that drifted with motion consistent or inconsistent with the translation. Velocity matching predicts different pursuit behaviors across drift conditions, while centroid matching predicts no difference. We also tested whether pursuit can segregate and ignore irrelevant local drifts when motion and centroid information are consistent by surrounding the Gabors with solid frames. Finally, observers judged the global translational speed of the Gabors to determine whether smooth pursuit and motion perception share mechanisms. We found that consistent Gabor motion enhanced pursuit gain while inconsistent, opposite motion diminished it, drawing the eyes away from the center of the stimulus and supporting a motion-based pursuit drive. Catch-up saccades tended to counter the position offset, directing the eyes opposite to the deviation caused by the pursuit gain change. Surrounding the Gabors with visible frames canceled both the gain increase and the compensatory saccades. Perceived speed was modulated analogous to pursuit gain. The results suggest that smooth pursuit of large stimuli depends on the magnitude of integrated retinal motion information, not its retinal location, and that the position system might be unnecessary for generating smooth velocity to large pursuit targets. The Association for Research in Vision and Ophthalmology 2017-10-31 /pmc/articles/PMC5665499/ /pubmed/29090315 http://dx.doi.org/10.1167/17.12.20 Text en Copyright 2017 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Article Ma, Zheng Watamaniuk, Scott N. J. Heinen, Stephen J. Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects |
title | Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects |
title_full | Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects |
title_fullStr | Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects |
title_full_unstemmed | Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects |
title_short | Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects |
title_sort | illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665499/ https://www.ncbi.nlm.nih.gov/pubmed/29090315 http://dx.doi.org/10.1167/17.12.20 |
work_keys_str_mv | AT mazheng illusorymotionrevealsvelocitymatchingnotfoveationdrivessmoothpursuitoflargeobjects AT watamaniukscottnj illusorymotionrevealsvelocitymatchingnotfoveationdrivessmoothpursuitoflargeobjects AT heinenstephenj illusorymotionrevealsvelocitymatchingnotfoveationdrivessmoothpursuitoflargeobjects |