Cargando…
Characterization of the deubiquitination activity and substrate specificity of the chicken ubiquitin-specific protease 1/USP associated factor 1 complex
Deubiquitinases (DUBs) are essential regulators of intracellular processes involving ubiquitin (Ub) modification. The human DUB ubiquitin-specific protease 1 (hUSP1) interacts with human USP-associated factor 1 (hUAF1), and helps to regulate processes such as DNA damage repair. Previously, we identi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665528/ https://www.ncbi.nlm.nih.gov/pubmed/29091922 http://dx.doi.org/10.1371/journal.pone.0186535 |
_version_ | 1783275165097918464 |
---|---|
author | Zheng, Hainan Wang, Mengyun Zhao, Chengcheng Wu, Shanli Yu, Peifeng Lü, Yan Wang, Tiedong Ai, Yongxing |
author_facet | Zheng, Hainan Wang, Mengyun Zhao, Chengcheng Wu, Shanli Yu, Peifeng Lü, Yan Wang, Tiedong Ai, Yongxing |
author_sort | Zheng, Hainan |
collection | PubMed |
description | Deubiquitinases (DUBs) are essential regulators of intracellular processes involving ubiquitin (Ub) modification. The human DUB ubiquitin-specific protease 1 (hUSP1) interacts with human USP-associated factor 1 (hUAF1), and helps to regulate processes such as DNA damage repair. Previously, we identified a chicken USP1 homologue (chUSP1) during an investigation into the properties of Marek's disease virus (MDV). However, chUSP1's deubiquitination activity, interaction with chUAF1, and substrate specificity remained unknown. In the present study, we expressed and purified both chUAF1 and chUSP1 with or without putative catalytic core mutations using the Bac-to-Bac system, before investigating their deubiquitination activity and kinetics using various substrates. chUSP1 was shown to interact with chUAF1 both in cellular assays in which the two proteins were co-expressed, and in in vitro assays using purified proteins. Heterodimerization with chUAF1 increased the deubiquitination activity of chUSP1 up to 54-fold compared with chUSP1 alone. The chUSP1 mutants C91S, H603A, and D758A reduced the deubiquitination activity of the chUSP1/chUAF1 complex by 10-, 7-, and 33-fold, respectively, while the C91A and H594A chUSP1 mutants eliminated deubiquitination activity of the chUSP1/chUAF1 complex completely. This suggests that C91 and H594, but not D758, are essential for chUSP1 deubiquitination activity, and that a nucleophilic group at position 91 is needed for the deubiquitination reaction. The chUSP1/chUAF1 complex was found to have distinct substrate preferences; efficient hydrolysis of Ub dimers with K11-, K48-, and K63-linkages was seen, with weaker hydrolysis observed with K6-, K27-, and K33-linkages and no hydrolysis seen with a K29-linkage. Furthermore, other Ub-like substrates were disfavored by the complex. No activity was seen with SUMO1-GST, SUMO2- and SUMO3-dimers, ISG15-Rho, FAT10-Rho, or Ufm1-Rho, and only weak activity was observed with NEDD8-Rho. Overall, the data presented here characterize the activity and substrate preferences of chUSP1, and thus may facilitate future studies on its in vivo role. |
format | Online Article Text |
id | pubmed-5665528 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56655282017-11-09 Characterization of the deubiquitination activity and substrate specificity of the chicken ubiquitin-specific protease 1/USP associated factor 1 complex Zheng, Hainan Wang, Mengyun Zhao, Chengcheng Wu, Shanli Yu, Peifeng Lü, Yan Wang, Tiedong Ai, Yongxing PLoS One Research Article Deubiquitinases (DUBs) are essential regulators of intracellular processes involving ubiquitin (Ub) modification. The human DUB ubiquitin-specific protease 1 (hUSP1) interacts with human USP-associated factor 1 (hUAF1), and helps to regulate processes such as DNA damage repair. Previously, we identified a chicken USP1 homologue (chUSP1) during an investigation into the properties of Marek's disease virus (MDV). However, chUSP1's deubiquitination activity, interaction with chUAF1, and substrate specificity remained unknown. In the present study, we expressed and purified both chUAF1 and chUSP1 with or without putative catalytic core mutations using the Bac-to-Bac system, before investigating their deubiquitination activity and kinetics using various substrates. chUSP1 was shown to interact with chUAF1 both in cellular assays in which the two proteins were co-expressed, and in in vitro assays using purified proteins. Heterodimerization with chUAF1 increased the deubiquitination activity of chUSP1 up to 54-fold compared with chUSP1 alone. The chUSP1 mutants C91S, H603A, and D758A reduced the deubiquitination activity of the chUSP1/chUAF1 complex by 10-, 7-, and 33-fold, respectively, while the C91A and H594A chUSP1 mutants eliminated deubiquitination activity of the chUSP1/chUAF1 complex completely. This suggests that C91 and H594, but not D758, are essential for chUSP1 deubiquitination activity, and that a nucleophilic group at position 91 is needed for the deubiquitination reaction. The chUSP1/chUAF1 complex was found to have distinct substrate preferences; efficient hydrolysis of Ub dimers with K11-, K48-, and K63-linkages was seen, with weaker hydrolysis observed with K6-, K27-, and K33-linkages and no hydrolysis seen with a K29-linkage. Furthermore, other Ub-like substrates were disfavored by the complex. No activity was seen with SUMO1-GST, SUMO2- and SUMO3-dimers, ISG15-Rho, FAT10-Rho, or Ufm1-Rho, and only weak activity was observed with NEDD8-Rho. Overall, the data presented here characterize the activity and substrate preferences of chUSP1, and thus may facilitate future studies on its in vivo role. Public Library of Science 2017-11-01 /pmc/articles/PMC5665528/ /pubmed/29091922 http://dx.doi.org/10.1371/journal.pone.0186535 Text en © 2017 Zheng et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Zheng, Hainan Wang, Mengyun Zhao, Chengcheng Wu, Shanli Yu, Peifeng Lü, Yan Wang, Tiedong Ai, Yongxing Characterization of the deubiquitination activity and substrate specificity of the chicken ubiquitin-specific protease 1/USP associated factor 1 complex |
title | Characterization of the deubiquitination activity and substrate specificity of the chicken ubiquitin-specific protease 1/USP associated factor 1 complex |
title_full | Characterization of the deubiquitination activity and substrate specificity of the chicken ubiquitin-specific protease 1/USP associated factor 1 complex |
title_fullStr | Characterization of the deubiquitination activity and substrate specificity of the chicken ubiquitin-specific protease 1/USP associated factor 1 complex |
title_full_unstemmed | Characterization of the deubiquitination activity and substrate specificity of the chicken ubiquitin-specific protease 1/USP associated factor 1 complex |
title_short | Characterization of the deubiquitination activity and substrate specificity of the chicken ubiquitin-specific protease 1/USP associated factor 1 complex |
title_sort | characterization of the deubiquitination activity and substrate specificity of the chicken ubiquitin-specific protease 1/usp associated factor 1 complex |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665528/ https://www.ncbi.nlm.nih.gov/pubmed/29091922 http://dx.doi.org/10.1371/journal.pone.0186535 |
work_keys_str_mv | AT zhenghainan characterizationofthedeubiquitinationactivityandsubstratespecificityofthechickenubiquitinspecificprotease1uspassociatedfactor1complex AT wangmengyun characterizationofthedeubiquitinationactivityandsubstratespecificityofthechickenubiquitinspecificprotease1uspassociatedfactor1complex AT zhaochengcheng characterizationofthedeubiquitinationactivityandsubstratespecificityofthechickenubiquitinspecificprotease1uspassociatedfactor1complex AT wushanli characterizationofthedeubiquitinationactivityandsubstratespecificityofthechickenubiquitinspecificprotease1uspassociatedfactor1complex AT yupeifeng characterizationofthedeubiquitinationactivityandsubstratespecificityofthechickenubiquitinspecificprotease1uspassociatedfactor1complex AT luyan characterizationofthedeubiquitinationactivityandsubstratespecificityofthechickenubiquitinspecificprotease1uspassociatedfactor1complex AT wangtiedong characterizationofthedeubiquitinationactivityandsubstratespecificityofthechickenubiquitinspecificprotease1uspassociatedfactor1complex AT aiyongxing characterizationofthedeubiquitinationactivityandsubstratespecificityofthechickenubiquitinspecificprotease1uspassociatedfactor1complex |