Cargando…
Network-based approaches to quantify multicellular development
Multicellularity and cellular cooperation confer novel functions on organs following a structure–function relationship. How regulated cell migration, division and differentiation events generate cellular arrangements has been investigated, providing insight into the regulation of genetically encoded...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665831/ https://www.ncbi.nlm.nih.gov/pubmed/29021161 http://dx.doi.org/10.1098/rsif.2017.0484 |
_version_ | 1783275194995965952 |
---|---|
author | Jackson, Matthew D. B. Duran-Nebreda, Salva Bassel, George W. |
author_facet | Jackson, Matthew D. B. Duran-Nebreda, Salva Bassel, George W. |
author_sort | Jackson, Matthew D. B. |
collection | PubMed |
description | Multicellularity and cellular cooperation confer novel functions on organs following a structure–function relationship. How regulated cell migration, division and differentiation events generate cellular arrangements has been investigated, providing insight into the regulation of genetically encoded patterning processes. Much less is known about the higher-order properties of cellular organization within organs, and how their functional coordination through global spatial relations shape and constrain organ function. Key questions to be addressed include: why are cells organized in the way they are? What is the significance of the patterns of cellular organization selected for by evolution? What other configurations are possible? These may be addressed through a combination of global cellular interaction mapping and network science to uncover the relationship between organ structure and function. Using this approach, global cellular organization can be discretized and analysed, providing a quantitative framework to explore developmental processes. Each of the local and global properties of integrated multicellular systems can be analysed and compared across different tissues and models in discrete terms. Advances in high-resolution microscopy and image analysis continue to make cellular interaction mapping possible in an increasing variety of biological systems and tissues, broadening the further potential application of this approach. Understanding the higher-order properties of complex cellular assemblies provides the opportunity to explore the evolution and constraints of cell organization, establishing structure–function relationships that can guide future organ design. |
format | Online Article Text |
id | pubmed-5665831 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-56658312017-11-08 Network-based approaches to quantify multicellular development Jackson, Matthew D. B. Duran-Nebreda, Salva Bassel, George W. J R Soc Interface Review Articles Multicellularity and cellular cooperation confer novel functions on organs following a structure–function relationship. How regulated cell migration, division and differentiation events generate cellular arrangements has been investigated, providing insight into the regulation of genetically encoded patterning processes. Much less is known about the higher-order properties of cellular organization within organs, and how their functional coordination through global spatial relations shape and constrain organ function. Key questions to be addressed include: why are cells organized in the way they are? What is the significance of the patterns of cellular organization selected for by evolution? What other configurations are possible? These may be addressed through a combination of global cellular interaction mapping and network science to uncover the relationship between organ structure and function. Using this approach, global cellular organization can be discretized and analysed, providing a quantitative framework to explore developmental processes. Each of the local and global properties of integrated multicellular systems can be analysed and compared across different tissues and models in discrete terms. Advances in high-resolution microscopy and image analysis continue to make cellular interaction mapping possible in an increasing variety of biological systems and tissues, broadening the further potential application of this approach. Understanding the higher-order properties of complex cellular assemblies provides the opportunity to explore the evolution and constraints of cell organization, establishing structure–function relationships that can guide future organ design. The Royal Society 2017-10 2017-10-11 /pmc/articles/PMC5665831/ /pubmed/29021161 http://dx.doi.org/10.1098/rsif.2017.0484 Text en © 2017 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Review Articles Jackson, Matthew D. B. Duran-Nebreda, Salva Bassel, George W. Network-based approaches to quantify multicellular development |
title | Network-based approaches to quantify multicellular development |
title_full | Network-based approaches to quantify multicellular development |
title_fullStr | Network-based approaches to quantify multicellular development |
title_full_unstemmed | Network-based approaches to quantify multicellular development |
title_short | Network-based approaches to quantify multicellular development |
title_sort | network-based approaches to quantify multicellular development |
topic | Review Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665831/ https://www.ncbi.nlm.nih.gov/pubmed/29021161 http://dx.doi.org/10.1098/rsif.2017.0484 |
work_keys_str_mv | AT jacksonmatthewdb networkbasedapproachestoquantifymulticellulardevelopment AT durannebredasalva networkbasedapproachestoquantifymulticellulardevelopment AT basselgeorgew networkbasedapproachestoquantifymulticellulardevelopment |