Cargando…
The characterisation of shellac resin by flow injection and liquid chromatography coupled with electrospray ionisation and mass spectrometry
A strategy based on electrospray ionisation (ESI) in negative mode coupled with quadrupole-time of flight (Q-ToF) detection techniques was adopted to characterise some samples of shellac resin. Flow injection analysis (FIA) was used to investigate the distribution of the components of the resin. Eig...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665916/ https://www.ncbi.nlm.nih.gov/pubmed/29093512 http://dx.doi.org/10.1038/s41598-017-14907-7 |
Sumario: | A strategy based on electrospray ionisation (ESI) in negative mode coupled with quadrupole-time of flight (Q-ToF) detection techniques was adopted to characterise some samples of shellac resin. Flow injection analysis (FIA) was used to investigate the distribution of the components of the resin. Eight groups of compounds with increasing masses were detected and assigned to free acids, esters and polyesters with up to eight units. High pressure liquid chromatography (HPLC) enabled the compounds to be chromatographically separated. Accurate molecular masses and tandem mass (MS/MS) spectra interpretation were used to characterise the different compounds, assigning and/or suggesting molecular structures. In some cases, highly detailed information about the ester linkages was provided by the MS/MS spectra, enabling the different isomers to be distinguished. Oxidation products were also identified in the samples and differences were observed in terms of hydrolysis and oxidation. In addition to providing the first characterisation of shellac by HPLC-ESI-Q-ToF and an atlas of MS/MS spectra of shellac components, this work demonstrates the suitability of the proposed strategy for characterising the resin, and provides the identification of previously unknown degradation products and minor components. This represents a significant step forward in the chemical knowledge of this material. |
---|