Cargando…
Bandwidth-enhanced and Wide-angle-of-incidence Metamaterial Absorber using a Hybrid Unit Cell
In this paper, a bandwidth-enhanced and wide-angle-of-incidence metamaterial absorber is proposed using a hybrid unit cell. Owing to symmetric unit cells, high absorptivity is maintained for all polarization angles. A circular-sector unit cell enables high absorptivity under the oblique incidence of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665957/ https://www.ncbi.nlm.nih.gov/pubmed/29093515 http://dx.doi.org/10.1038/s41598-017-14792-0 |
Sumario: | In this paper, a bandwidth-enhanced and wide-angle-of-incidence metamaterial absorber is proposed using a hybrid unit cell. Owing to symmetric unit cells, high absorptivity is maintained for all polarization angles. A circular-sector unit cell enables high absorptivity under the oblique incidence of both transverse electric (TE) and transverse magnetic (TM) modes. To enhance the bandwidth, we introduced a hybrid unit cell comprising four circular sectors. Two sectors resonate at 10.38 GHz, and two resonate at 10.55 GHz. Since the two absorption frequencies are near each other, the bandwidth increases. The proposed idea is demonstrated with both full-wave simulations and measurements. The simulated absorptivity exceeds 91% around 10.45 GHz at an angle of incidence up to 70° in both TM and TE polarizations. The measured absorptivity at 10.45 GHz is close to 96.5% for all polarization angles under normal incidence. As the angle of incidence changes from 0° to 70°, the measured absorptivity at 10.45 GHz remains above 90% in the TE mode and higher than 94% in the TM mode. Under an oblique incidence, the measured 90% absorption bandwidth is 1.95% from 10.1–10.2 GHz and 10.4–10.5 GHz up to 70° at the TE mode, and 3.39% from 10.15–10.5 GHz up to 70° at the TM mode. |
---|