Cargando…
Combating virulence of Gram-negative bacilli by OmpA inhibition
Preventing the adhesion of pathogens to host cells provides an innovative approach to tackling multidrug-resistant bacteria. In this regard, the identification of outer membrane protein A (OmpA) as a key bacterial virulence factor has been a major breakthrough. The use of virtual screening helped us...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666006/ https://www.ncbi.nlm.nih.gov/pubmed/29089624 http://dx.doi.org/10.1038/s41598-017-14972-y |
Sumario: | Preventing the adhesion of pathogens to host cells provides an innovative approach to tackling multidrug-resistant bacteria. In this regard, the identification of outer membrane protein A (OmpA) as a key bacterial virulence factor has been a major breakthrough. The use of virtual screening helped us to identify a cyclic hexapeptide AOA-2 that inhibits the adhesion of Acinetobacter baumannii, Pseudomonas aeruginosa and Escherichia coli to host cells and the formation of biofilm, thereby preventing the development of infection in vitro and in a murine sepsis peritoneal model. Inhibition of OmpA offers a strategy as monotherapy to address the urgent need for treatments for infections caused by Gram-negative bacilli. |
---|