Cargando…
A posteriori error estimates for the virtual element method
An posteriori error analysis for the virtual element method (VEM) applied to general elliptic problems is presented. The resulting error estimator is of residual-type and applies on very general polygonal/polyhedral meshes. The estimator is fully computable as it relies only on quantities available...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666077/ https://www.ncbi.nlm.nih.gov/pubmed/29151622 http://dx.doi.org/10.1007/s00211-017-0891-9 |
_version_ | 1783275240757919744 |
---|---|
author | Cangiani, Andrea Georgoulis, Emmanuil H. Pryer, Tristan Sutton, Oliver J. |
author_facet | Cangiani, Andrea Georgoulis, Emmanuil H. Pryer, Tristan Sutton, Oliver J. |
author_sort | Cangiani, Andrea |
collection | PubMed |
description | An posteriori error analysis for the virtual element method (VEM) applied to general elliptic problems is presented. The resulting error estimator is of residual-type and applies on very general polygonal/polyhedral meshes. The estimator is fully computable as it relies only on quantities available from the VEM solution, namely its degrees of freedom and element-wise polynomial projection. Upper and lower bounds of the error estimator with respect to the VEM approximation error are proven. The error estimator is used to drive adaptive mesh refinement in a number of test problems. Mesh adaptation is particularly simple to implement since elements with consecutive co-planar edges/faces are allowed and, therefore, locally adapted meshes do not require any local mesh post-processing. |
format | Online Article Text |
id | pubmed-5666077 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-56660772017-11-16 A posteriori error estimates for the virtual element method Cangiani, Andrea Georgoulis, Emmanuil H. Pryer, Tristan Sutton, Oliver J. Numer Math (Heidelb) Article An posteriori error analysis for the virtual element method (VEM) applied to general elliptic problems is presented. The resulting error estimator is of residual-type and applies on very general polygonal/polyhedral meshes. The estimator is fully computable as it relies only on quantities available from the VEM solution, namely its degrees of freedom and element-wise polynomial projection. Upper and lower bounds of the error estimator with respect to the VEM approximation error are proven. The error estimator is used to drive adaptive mesh refinement in a number of test problems. Mesh adaptation is particularly simple to implement since elements with consecutive co-planar edges/faces are allowed and, therefore, locally adapted meshes do not require any local mesh post-processing. Springer Berlin Heidelberg 2017-05-18 2017 /pmc/articles/PMC5666077/ /pubmed/29151622 http://dx.doi.org/10.1007/s00211-017-0891-9 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Cangiani, Andrea Georgoulis, Emmanuil H. Pryer, Tristan Sutton, Oliver J. A posteriori error estimates for the virtual element method |
title | A posteriori error estimates for the virtual element method |
title_full | A posteriori error estimates for the virtual element method |
title_fullStr | A posteriori error estimates for the virtual element method |
title_full_unstemmed | A posteriori error estimates for the virtual element method |
title_short | A posteriori error estimates for the virtual element method |
title_sort | posteriori error estimates for the virtual element method |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666077/ https://www.ncbi.nlm.nih.gov/pubmed/29151622 http://dx.doi.org/10.1007/s00211-017-0891-9 |
work_keys_str_mv | AT cangianiandrea aposteriorierrorestimatesforthevirtualelementmethod AT georgoulisemmanuilh aposteriorierrorestimatesforthevirtualelementmethod AT pryertristan aposteriorierrorestimatesforthevirtualelementmethod AT suttonoliverj aposteriorierrorestimatesforthevirtualelementmethod AT cangianiandrea posteriorierrorestimatesforthevirtualelementmethod AT georgoulisemmanuilh posteriorierrorestimatesforthevirtualelementmethod AT pryertristan posteriorierrorestimatesforthevirtualelementmethod AT suttonoliverj posteriorierrorestimatesforthevirtualelementmethod |