Cargando…

Analysis of metabolomic patterns in thoroughbreds before and after exercise

OBJECTIVE: Evaluation of exercise effects in racehorses is important in horseracing industry and animal health care. In this study, we compared metabolic patterns between before and after exercise to screen metabolic biomarkers for exercise effects in thoroughbreds. METHODS: The concentration of met...

Descripción completa

Detalles Bibliográficos
Autores principales: Jang, Hyun-Jun, Kim, Duk-Moon, Kim, Kyu-Bong, Park, Jeong-Woong, Choi, Jae-Young, Oh, Jin Hyeog, Song, Ki-Duk, Kim, Suhkmann, Cho, Byung-Wook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Asian-Australasian Association of Animal Production Societies (AAAP) and Korean Society of Animal Science and Technology (KSAST) 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666199/
https://www.ncbi.nlm.nih.gov/pubmed/28728374
http://dx.doi.org/10.5713/ajas.17.0167
Descripción
Sumario:OBJECTIVE: Evaluation of exercise effects in racehorses is important in horseracing industry and animal health care. In this study, we compared metabolic patterns between before and after exercise to screen metabolic biomarkers for exercise effects in thoroughbreds. METHODS: The concentration of metabolites in muscle, plasma, and urine was measured by (1)H nuclear magnetic resonance (NMR) spectroscopy analysis and the relative metabolite levels in the three samples were compared between before and after exercise. Subsequently, multivariate data analysis based on the metabolic profiles was performed using orthogonal partial least square discriminant analysis (OPLS-DA) and variable important plots and t-test was used for basic statistical analysis. RESULTS: From (1)H NMR spectroscopy analysis, 35, 25, and 34 metabolites were detected in the muscle, plasma, and urine. Aspartate, betaine, choline, cysteine, ethanol, and threonine were increased over 2-fold in the muscle; propionate and trimethylamine were increased over 2-fold in the plasma; and alanine, glycerol, inosine, lactate, and pyruvate were increased over 2-fold whereas acetoacetate, arginine, citrulline, creatine, glutamine, glutarate, hippurate, lysine, methionine, phenylacetylglycine, taurine, trigonelline, trimethylamine, and trimethylamine N-oxide were decreased below 0.5-fold in the urine. The OPLS-DA showed clear separation of the metabolic patterns before and after exercise in the muscle, plasma, and urine. Statistical analysis showed that after exercise, acetoacetate, arginine, glutamine, hippurate, phenylacetylglycine trimethylamine, trimethylamine N-oxide, and trigonelline were significantly decreased and alanine, glycerol, inosine, lactate, and pyruvate were significantly increased in the urine (p<0.05). CONCLUSION: In conclusion, we analyzed integrated metabolic patterns in the muscle, plasma, and urine before and after exercise in racehorses. We found changed patterns of metabolites in the muscle, plasma, and urine of racehorses before and after exercise.