Cargando…

Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation

We consider the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces [Formula: see text] , [Formula: see text] , are quasi-invariant under the flow.

Detalles Bibliográficos
Autores principales: Oh, Tadahiro, Tzvetkov, Nikolay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666209/
https://www.ncbi.nlm.nih.gov/pubmed/29151661
http://dx.doi.org/10.1007/s00440-016-0748-7
Descripción
Sumario:We consider the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces [Formula: see text] , [Formula: see text] , are quasi-invariant under the flow.