Cargando…
Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation
We consider the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces [Formula: see text] , [Formula: see text] , are quasi-invariant under the flow.
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666209/ https://www.ncbi.nlm.nih.gov/pubmed/29151661 http://dx.doi.org/10.1007/s00440-016-0748-7 |
Sumario: | We consider the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces [Formula: see text] , [Formula: see text] , are quasi-invariant under the flow. |
---|