Cargando…
Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation
We consider the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces [Formula: see text] , [Formula: see text] , are quasi-invariant under the flow.
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666209/ https://www.ncbi.nlm.nih.gov/pubmed/29151661 http://dx.doi.org/10.1007/s00440-016-0748-7 |
_version_ | 1783275262075469824 |
---|---|
author | Oh, Tadahiro Tzvetkov, Nikolay |
author_facet | Oh, Tadahiro Tzvetkov, Nikolay |
author_sort | Oh, Tadahiro |
collection | PubMed |
description | We consider the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces [Formula: see text] , [Formula: see text] , are quasi-invariant under the flow. |
format | Online Article Text |
id | pubmed-5666209 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-56662092017-11-16 Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation Oh, Tadahiro Tzvetkov, Nikolay Probab Theory Relat Fields Article We consider the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces [Formula: see text] , [Formula: see text] , are quasi-invariant under the flow. Springer Berlin Heidelberg 2016-12-23 2017 /pmc/articles/PMC5666209/ /pubmed/29151661 http://dx.doi.org/10.1007/s00440-016-0748-7 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Oh, Tadahiro Tzvetkov, Nikolay Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation |
title | Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation |
title_full | Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation |
title_fullStr | Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation |
title_full_unstemmed | Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation |
title_short | Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation |
title_sort | quasi-invariant gaussian measures for the cubic fourth order nonlinear schrödinger equation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666209/ https://www.ncbi.nlm.nih.gov/pubmed/29151661 http://dx.doi.org/10.1007/s00440-016-0748-7 |
work_keys_str_mv | AT ohtadahiro quasiinvariantgaussianmeasuresforthecubicfourthordernonlinearschrodingerequation AT tzvetkovnikolay quasiinvariantgaussianmeasuresforthecubicfourthordernonlinearschrodingerequation |