Cargando…

Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation

We consider the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces [Formula: see text] , [Formula: see text] , are quasi-invariant under the flow.

Detalles Bibliográficos
Autores principales: Oh, Tadahiro, Tzvetkov, Nikolay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666209/
https://www.ncbi.nlm.nih.gov/pubmed/29151661
http://dx.doi.org/10.1007/s00440-016-0748-7
_version_ 1783275262075469824
author Oh, Tadahiro
Tzvetkov, Nikolay
author_facet Oh, Tadahiro
Tzvetkov, Nikolay
author_sort Oh, Tadahiro
collection PubMed
description We consider the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces [Formula: see text] , [Formula: see text] , are quasi-invariant under the flow.
format Online
Article
Text
id pubmed-5666209
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-56662092017-11-16 Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation Oh, Tadahiro Tzvetkov, Nikolay Probab Theory Relat Fields Article We consider the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces [Formula: see text] , [Formula: see text] , are quasi-invariant under the flow. Springer Berlin Heidelberg 2016-12-23 2017 /pmc/articles/PMC5666209/ /pubmed/29151661 http://dx.doi.org/10.1007/s00440-016-0748-7 Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Oh, Tadahiro
Tzvetkov, Nikolay
Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation
title Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation
title_full Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation
title_fullStr Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation
title_full_unstemmed Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation
title_short Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation
title_sort quasi-invariant gaussian measures for the cubic fourth order nonlinear schrödinger equation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666209/
https://www.ncbi.nlm.nih.gov/pubmed/29151661
http://dx.doi.org/10.1007/s00440-016-0748-7
work_keys_str_mv AT ohtadahiro quasiinvariantgaussianmeasuresforthecubicfourthordernonlinearschrodingerequation
AT tzvetkovnikolay quasiinvariantgaussianmeasuresforthecubicfourthordernonlinearschrodingerequation