Cargando…
Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation
We consider the cubic fourth order nonlinear Schrödinger equation on the circle. In particular, we prove that the mean-zero Gaussian measures on Sobolev spaces [Formula: see text] , [Formula: see text] , are quasi-invariant under the flow.
Autores principales: | Oh, Tadahiro, Tzvetkov, Nikolay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666209/ https://www.ncbi.nlm.nih.gov/pubmed/29151661 http://dx.doi.org/10.1007/s00440-016-0748-7 |
Ejemplares similares
-
On an infinite series of invariant measures for the cubic nonlinear Schrödinger equation
por: Zhidkov, E P
Publicado: (1996) -
A pedestrian approach to the invariant Gibbs measures for the 2-d defocusing nonlinear Schrödinger equations
por: Oh, Tadahiro, et al.
Publicado: (2018) -
Higher Dimensional Gaussian-Type Solitons of Nonlinear Schrödinger Equation with Cubic and Power-Law Nonlinearities in PT-Symmetric Potentials
por: Chen, Yi-Xiang, et al.
Publicado: (2014) -
Invariant measures for the 2D-defocusing nonlinear Schrödinger equation
por: Bourgain, J
Publicado: (1994) -
Invariant manifolds and fibrations for perturbed nonlinear Schrödinger equations
por: Li, Charles, et al.
Publicado: (1997)