Cargando…
Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider
The evolutionary history of Antarctic organisms is becoming increasingly important to understand and manage population trajectories under rapid environmental change. The Antarctic sea spider Nymphon australe, with an apparently large population size compared with other sea spider species, is an idea...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666255/ https://www.ncbi.nlm.nih.gov/pubmed/29134072 http://dx.doi.org/10.1098/rsos.170615 |
_version_ | 1783275271116292096 |
---|---|
author | Soler-Membrives, Anna Linse, Katrin Miller, Karen J. Arango, Claudia P. |
author_facet | Soler-Membrives, Anna Linse, Katrin Miller, Karen J. Arango, Claudia P. |
author_sort | Soler-Membrives, Anna |
collection | PubMed |
description | The evolutionary history of Antarctic organisms is becoming increasingly important to understand and manage population trajectories under rapid environmental change. The Antarctic sea spider Nymphon australe, with an apparently large population size compared with other sea spider species, is an ideal target to look for molecular signatures of past climatic events. We analysed mitochondrial DNA of specimens collected from the Antarctic continent and two Antarctic islands (AI) to infer past population processes and understand current genetic structure. Demographic history analyses suggest populations survived in refugia during the Last Glacial Maximum. The high genetic diversity found in the Antarctic Peninsula and East Antarctic (EA) seems related to multiple demographic contraction–expansion events associated with deep-sea refugia, while the low genetic diversity in the Weddell Sea points to a more recent expansion from a shelf refugium. We suggest the genetic structure of N. australe from AI reflects recent colonization from the continent. At a local level, EA populations reveal generally low genetic differentiation, geographically and bathymetrically, suggesting limited restrictions to dispersal. Results highlight regional differences in demographic histories and how these relate to the variation in intensity of glaciation–deglaciation events around Antarctica, critical for the study of local evolutionary processes. These are valuable data for understanding the remarkable success of Antarctic pycnogonids, and how environmental changes have shaped the evolution and diversification of Southern Ocean benthic biodiversity. |
format | Online Article Text |
id | pubmed-5666255 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-56662552017-11-13 Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider Soler-Membrives, Anna Linse, Katrin Miller, Karen J. Arango, Claudia P. R Soc Open Sci Biology (Whole Organism) The evolutionary history of Antarctic organisms is becoming increasingly important to understand and manage population trajectories under rapid environmental change. The Antarctic sea spider Nymphon australe, with an apparently large population size compared with other sea spider species, is an ideal target to look for molecular signatures of past climatic events. We analysed mitochondrial DNA of specimens collected from the Antarctic continent and two Antarctic islands (AI) to infer past population processes and understand current genetic structure. Demographic history analyses suggest populations survived in refugia during the Last Glacial Maximum. The high genetic diversity found in the Antarctic Peninsula and East Antarctic (EA) seems related to multiple demographic contraction–expansion events associated with deep-sea refugia, while the low genetic diversity in the Weddell Sea points to a more recent expansion from a shelf refugium. We suggest the genetic structure of N. australe from AI reflects recent colonization from the continent. At a local level, EA populations reveal generally low genetic differentiation, geographically and bathymetrically, suggesting limited restrictions to dispersal. Results highlight regional differences in demographic histories and how these relate to the variation in intensity of glaciation–deglaciation events around Antarctica, critical for the study of local evolutionary processes. These are valuable data for understanding the remarkable success of Antarctic pycnogonids, and how environmental changes have shaped the evolution and diversification of Southern Ocean benthic biodiversity. The Royal Society Publishing 2017-10-18 /pmc/articles/PMC5666255/ /pubmed/29134072 http://dx.doi.org/10.1098/rsos.170615 Text en © 2017 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Biology (Whole Organism) Soler-Membrives, Anna Linse, Katrin Miller, Karen J. Arango, Claudia P. Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider |
title | Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider |
title_full | Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider |
title_fullStr | Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider |
title_full_unstemmed | Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider |
title_short | Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider |
title_sort | genetic signature of last glacial maximum regional refugia in a circum-antarctic sea spider |
topic | Biology (Whole Organism) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666255/ https://www.ncbi.nlm.nih.gov/pubmed/29134072 http://dx.doi.org/10.1098/rsos.170615 |
work_keys_str_mv | AT solermembrivesanna geneticsignatureoflastglacialmaximumregionalrefugiainacircumantarcticseaspider AT linsekatrin geneticsignatureoflastglacialmaximumregionalrefugiainacircumantarcticseaspider AT millerkarenj geneticsignatureoflastglacialmaximumregionalrefugiainacircumantarcticseaspider AT arangoclaudiap geneticsignatureoflastglacialmaximumregionalrefugiainacircumantarcticseaspider |