Cargando…

Emergence of Nasal Carriage of ST80 and ST152 PVL+ Staphylococcus aureus Isolates from Livestock in Algeria

The spread of toxinogenic Staphylococcus aureus is a public health problem in Africa. The objectives of the study were to investigate the rate of S. aureus nasal carriage and molecular characteristics of these strains in livestock and humans in three Algerian provinces. Nasal samples were collected...

Descripción completa

Detalles Bibliográficos
Autores principales: Agabou, Amir, Ouchenane, Zouleikha, Ngba Essebe, Christelle, Khemissi, Salim, Chehboub, Mohamed Tedj Eddine, Chehboub, Ilyes Bey, Sotto, Albert, Dunyach-Remy, Catherine, Lavigne, Jean-Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666350/
https://www.ncbi.nlm.nih.gov/pubmed/28946704
http://dx.doi.org/10.3390/toxins9100303
Descripción
Sumario:The spread of toxinogenic Staphylococcus aureus is a public health problem in Africa. The objectives of the study were to investigate the rate of S. aureus nasal carriage and molecular characteristics of these strains in livestock and humans in three Algerian provinces. Nasal samples were collected from camels, horses, cattle, sheep and monkeys, as well as humans in contact with them. S. aureus isolates were genotyped using DNA microarray. The rate of S. aureus nasal carriage varied between species: camels (53%), humans and monkeys (50%), sheep (44.2%), horses (15.2%) and cattle (15%). Nine methicillin-resistant S. aureus (MRSA) isolates (7.6%) were identified, isolated from camels and sheep. The S. aureus isolates belonged to 15 different clonal complexes. Among them, PVL+ (Panton–Valentine Leukocidin) isolates belonging to ST80-MRSA-IV and ST152-MSSA were identified in camels (n = 3, 13%) and sheep (n = 4, 21.1%). A high prevalence of toxinogenic animal strains was noted containing TSST-1- (22.2%), EDINB- (29.6%) and EtD- (11.1%) encoding genes. This study showed the dispersal of the highly human pathogenic clones ST152-MSSA and ST-80-MRSA in animals. It suggests the ability of some clones to cross the species barrier and jump between humans and several animal species.