Cargando…

Discovering the Biological Target of 5-epi-Sinuleptolide Using a Combination of Proteomic Approaches

Sinuleptolide and its congeners are diterpenes with a norcembranoid skeleton isolated from the soft coral genus Sinularia. These marine metabolites are endowed with relevant biological activities, mainly associated with cancer development. 5-epi-sinuleptolide has been selected as a candidate for tar...

Descripción completa

Detalles Bibliográficos
Autores principales: Morretta, Elva, Esposito, Roberta, Festa, Carmen, Riccio, Raffaele, Casapullo, Agostino, Monti, Maria Chiara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666420/
https://www.ncbi.nlm.nih.gov/pubmed/29027931
http://dx.doi.org/10.3390/md15100312
Descripción
Sumario:Sinuleptolide and its congeners are diterpenes with a norcembranoid skeleton isolated from the soft coral genus Sinularia. These marine metabolites are endowed with relevant biological activities, mainly associated with cancer development. 5-epi-sinuleptolide has been selected as a candidate for target discovery studies through the application of complementary proteomic approaches. Specifically, a combination of conventional chemical proteomics based on affinity chromatography, coupled with high-resolution mass spectrometry and bioinformatics, as well as drug affinity responsive target stability (DARTS), led to a clear identification of actins as main targets for 5-epi-sinuleptolide. Subsequent in-cell assays, performed with cytochalasin D as reference compound, gave information on the ability of 5-epi-sinuleptolide to disrupt the actin cytoskeleton by loss of actin fibers and formation of F-actin amorphous aggregates. These results suggest the potential application of 5-epi-sinuleptolide as a useful tool in the study of the molecular processes impaired in several disorders in which actin is thought to play an essential role.