Cargando…
Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk
Fine/micron-sized iron oxide particulates are incidentally released from a number of industrial processes, including iron ore mining, steel processing, welding, and pyrite production. Some research suggests that occupational exposure to these particulates is linked to an increased risk of adverse re...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666472/ https://www.ncbi.nlm.nih.gov/pubmed/28984829 http://dx.doi.org/10.3390/nano7100307 |
_version_ | 1783275321348325376 |
---|---|
author | Kornberg, Tiffany G. Stueckle, Todd A. Antonini, James M. Rojanasakul, Yon Castranova, Vincent Yang, Yong Rojanasakul, Liying W. |
author_facet | Kornberg, Tiffany G. Stueckle, Todd A. Antonini, James M. Rojanasakul, Yon Castranova, Vincent Yang, Yong Rojanasakul, Liying W. |
author_sort | Kornberg, Tiffany G. |
collection | PubMed |
description | Fine/micron-sized iron oxide particulates are incidentally released from a number of industrial processes, including iron ore mining, steel processing, welding, and pyrite production. Some research suggests that occupational exposure to these particulates is linked to an increased risk of adverse respiratory outcomes, whereas other studies suggest that iron oxide is biologically benign. Iron oxide nanoparticles (IONPs), which are less than 100 nm in diameter, have recently surged in use as components of novel drug delivery systems, unique imaging protocols, as environmental catalysts, and for incorporation into thermoplastics. However, the adverse outcomes associated with occupational exposure to IONPs remain relatively unknown. Relevant in vivo studies suggest that pulmonary exposure to IONPs may induce inflammation, pulmonary fibrosis, genotoxicity, and extra-pulmonary effects. This correlates well with in vitro studies that utilize relevant dose, cell type(s), and meaningful end points. A majority of these adverse outcomes are attributed to increased oxidative stress, most likely caused by particle internalization, dissolution, release of free iron ions, and disruption of iron homeostasis. However, because the overall toxicity profile of IONPs is not well understood, it is difficult to set safe exposure limit recommendations that would be adequate for the protection of at-risk workers. This review article will focus on known risks following IONPs exposure supported by human, animal, and cell culture-based studies, the potential challenges intrinsic to IONPs toxicity assessment, and how these may contribute to the poorly characterized IONPs toxicity profile. |
format | Online Article Text |
id | pubmed-5666472 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-56664722017-11-09 Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk Kornberg, Tiffany G. Stueckle, Todd A. Antonini, James M. Rojanasakul, Yon Castranova, Vincent Yang, Yong Rojanasakul, Liying W. Nanomaterials (Basel) Review Fine/micron-sized iron oxide particulates are incidentally released from a number of industrial processes, including iron ore mining, steel processing, welding, and pyrite production. Some research suggests that occupational exposure to these particulates is linked to an increased risk of adverse respiratory outcomes, whereas other studies suggest that iron oxide is biologically benign. Iron oxide nanoparticles (IONPs), which are less than 100 nm in diameter, have recently surged in use as components of novel drug delivery systems, unique imaging protocols, as environmental catalysts, and for incorporation into thermoplastics. However, the adverse outcomes associated with occupational exposure to IONPs remain relatively unknown. Relevant in vivo studies suggest that pulmonary exposure to IONPs may induce inflammation, pulmonary fibrosis, genotoxicity, and extra-pulmonary effects. This correlates well with in vitro studies that utilize relevant dose, cell type(s), and meaningful end points. A majority of these adverse outcomes are attributed to increased oxidative stress, most likely caused by particle internalization, dissolution, release of free iron ions, and disruption of iron homeostasis. However, because the overall toxicity profile of IONPs is not well understood, it is difficult to set safe exposure limit recommendations that would be adequate for the protection of at-risk workers. This review article will focus on known risks following IONPs exposure supported by human, animal, and cell culture-based studies, the potential challenges intrinsic to IONPs toxicity assessment, and how these may contribute to the poorly characterized IONPs toxicity profile. MDPI 2017-10-06 /pmc/articles/PMC5666472/ /pubmed/28984829 http://dx.doi.org/10.3390/nano7100307 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Kornberg, Tiffany G. Stueckle, Todd A. Antonini, James M. Rojanasakul, Yon Castranova, Vincent Yang, Yong Rojanasakul, Liying W. Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk |
title | Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk |
title_full | Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk |
title_fullStr | Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk |
title_full_unstemmed | Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk |
title_short | Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk |
title_sort | potential toxicity and underlying mechanisms associated with pulmonary exposure to iron oxide nanoparticles: conflicting literature and unclear risk |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666472/ https://www.ncbi.nlm.nih.gov/pubmed/28984829 http://dx.doi.org/10.3390/nano7100307 |
work_keys_str_mv | AT kornbergtiffanyg potentialtoxicityandunderlyingmechanismsassociatedwithpulmonaryexposuretoironoxidenanoparticlesconflictingliteratureandunclearrisk AT stueckletodda potentialtoxicityandunderlyingmechanismsassociatedwithpulmonaryexposuretoironoxidenanoparticlesconflictingliteratureandunclearrisk AT antoninijamesm potentialtoxicityandunderlyingmechanismsassociatedwithpulmonaryexposuretoironoxidenanoparticlesconflictingliteratureandunclearrisk AT rojanasakulyon potentialtoxicityandunderlyingmechanismsassociatedwithpulmonaryexposuretoironoxidenanoparticlesconflictingliteratureandunclearrisk AT castranovavincent potentialtoxicityandunderlyingmechanismsassociatedwithpulmonaryexposuretoironoxidenanoparticlesconflictingliteratureandunclearrisk AT yangyong potentialtoxicityandunderlyingmechanismsassociatedwithpulmonaryexposuretoironoxidenanoparticlesconflictingliteratureandunclearrisk AT rojanasakulliyingw potentialtoxicityandunderlyingmechanismsassociatedwithpulmonaryexposuretoironoxidenanoparticlesconflictingliteratureandunclearrisk |