Cargando…
Transformation of CuO Nanoparticles in the Aquatic Environment: Influence of pH, Electrolytes and Natural Organic Matter
Many studies have shown the effect of solution chemistry on the environmental behavior of metal-based nanoparticles (NPs), except CuO NPs. Here, we investigated the agglomeration, sedimentation, dissolution, and speciation of CuO NPs by varying pH, ionic strength, ionic valence, and natural organic...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666491/ https://www.ncbi.nlm.nih.gov/pubmed/29036921 http://dx.doi.org/10.3390/nano7100326 |
_version_ | 1783275325975691264 |
---|---|
author | Peng, Cheng Shen, Chensi Zheng, Siyuan Yang, Weiling Hu, Hang Liu, Jianshe Shi, Jiyan |
author_facet | Peng, Cheng Shen, Chensi Zheng, Siyuan Yang, Weiling Hu, Hang Liu, Jianshe Shi, Jiyan |
author_sort | Peng, Cheng |
collection | PubMed |
description | Many studies have shown the effect of solution chemistry on the environmental behavior of metal-based nanoparticles (NPs), except CuO NPs. Here, we investigated the agglomeration, sedimentation, dissolution, and speciation of CuO NPs by varying pH, ionic strength, ionic valence, and natural organic matter (NOM). The results showed that as the pH moved away from 6, the size of CuO agglomerates decreased, along with the enhanced NP suspension stabilization, due to the increase of electrostatic repulsive force. Increasing ionic strength and valence intensified the agglomeration and sedimentation of CuO NPs because of the compression of electrical double layers. The presence of humic acid and citric acid enhanced the dispersion and stabilization of CuO NP suspension, but l-cysteine showed a different impact. Decreasing pH, increasing ionic strength and all NOM improved the dissolution of CuO NPs, but the divalent electrolyte (CaCl(2)) inhibited the Cu(2+) release from CuO NPs compared to the monovalent electrolyte (NaCl). In addition, X-ray absorption near edge structure (XANES) analysis demonstrated that the presence of l-cysteine transformed more than 30% of CuO NPs to Cu(I)-cysteine by coordinating with thiol group. This study can give us an in-depth understanding on the environmental behavior and fate of CuO NPs in the aquatic environment. |
format | Online Article Text |
id | pubmed-5666491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-56664912017-11-09 Transformation of CuO Nanoparticles in the Aquatic Environment: Influence of pH, Electrolytes and Natural Organic Matter Peng, Cheng Shen, Chensi Zheng, Siyuan Yang, Weiling Hu, Hang Liu, Jianshe Shi, Jiyan Nanomaterials (Basel) Article Many studies have shown the effect of solution chemistry on the environmental behavior of metal-based nanoparticles (NPs), except CuO NPs. Here, we investigated the agglomeration, sedimentation, dissolution, and speciation of CuO NPs by varying pH, ionic strength, ionic valence, and natural organic matter (NOM). The results showed that as the pH moved away from 6, the size of CuO agglomerates decreased, along with the enhanced NP suspension stabilization, due to the increase of electrostatic repulsive force. Increasing ionic strength and valence intensified the agglomeration and sedimentation of CuO NPs because of the compression of electrical double layers. The presence of humic acid and citric acid enhanced the dispersion and stabilization of CuO NP suspension, but l-cysteine showed a different impact. Decreasing pH, increasing ionic strength and all NOM improved the dissolution of CuO NPs, but the divalent electrolyte (CaCl(2)) inhibited the Cu(2+) release from CuO NPs compared to the monovalent electrolyte (NaCl). In addition, X-ray absorption near edge structure (XANES) analysis demonstrated that the presence of l-cysteine transformed more than 30% of CuO NPs to Cu(I)-cysteine by coordinating with thiol group. This study can give us an in-depth understanding on the environmental behavior and fate of CuO NPs in the aquatic environment. MDPI 2017-10-14 /pmc/articles/PMC5666491/ /pubmed/29036921 http://dx.doi.org/10.3390/nano7100326 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Peng, Cheng Shen, Chensi Zheng, Siyuan Yang, Weiling Hu, Hang Liu, Jianshe Shi, Jiyan Transformation of CuO Nanoparticles in the Aquatic Environment: Influence of pH, Electrolytes and Natural Organic Matter |
title | Transformation of CuO Nanoparticles in the Aquatic Environment: Influence of pH, Electrolytes and Natural Organic Matter |
title_full | Transformation of CuO Nanoparticles in the Aquatic Environment: Influence of pH, Electrolytes and Natural Organic Matter |
title_fullStr | Transformation of CuO Nanoparticles in the Aquatic Environment: Influence of pH, Electrolytes and Natural Organic Matter |
title_full_unstemmed | Transformation of CuO Nanoparticles in the Aquatic Environment: Influence of pH, Electrolytes and Natural Organic Matter |
title_short | Transformation of CuO Nanoparticles in the Aquatic Environment: Influence of pH, Electrolytes and Natural Organic Matter |
title_sort | transformation of cuo nanoparticles in the aquatic environment: influence of ph, electrolytes and natural organic matter |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666491/ https://www.ncbi.nlm.nih.gov/pubmed/29036921 http://dx.doi.org/10.3390/nano7100326 |
work_keys_str_mv | AT pengcheng transformationofcuonanoparticlesintheaquaticenvironmentinfluenceofphelectrolytesandnaturalorganicmatter AT shenchensi transformationofcuonanoparticlesintheaquaticenvironmentinfluenceofphelectrolytesandnaturalorganicmatter AT zhengsiyuan transformationofcuonanoparticlesintheaquaticenvironmentinfluenceofphelectrolytesandnaturalorganicmatter AT yangweiling transformationofcuonanoparticlesintheaquaticenvironmentinfluenceofphelectrolytesandnaturalorganicmatter AT huhang transformationofcuonanoparticlesintheaquaticenvironmentinfluenceofphelectrolytesandnaturalorganicmatter AT liujianshe transformationofcuonanoparticlesintheaquaticenvironmentinfluenceofphelectrolytesandnaturalorganicmatter AT shijiyan transformationofcuonanoparticlesintheaquaticenvironmentinfluenceofphelectrolytesandnaturalorganicmatter |