Cargando…

A Sub-Microanalysis Approach in Chemical Characterisation of Gold Nanorods Formed by a Novel Polymer-Immobilised Gold Seeds Base

Gold nanorods (GNRs) have been fabricated by a novel polymer-immobilised seed mediated method using ultraviolet (UV) photoreduced gold-polymethylmethacrylate (Au–PMMA) nanocomposites as a seed platform and characterised at sub-micron scale regime with synchrotron-based techniques; near-edge X-ray ab...

Descripción completa

Detalles Bibliográficos
Autores principales: Abyaneh, Majid Kazemian, Araki, Tohru, Kaulich, Burkhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666496/
https://www.ncbi.nlm.nih.gov/pubmed/29035310
http://dx.doi.org/10.3390/nano7100331
Descripción
Sumario:Gold nanorods (GNRs) have been fabricated by a novel polymer-immobilised seed mediated method using ultraviolet (UV) photoreduced gold-polymethylmethacrylate (Au–PMMA) nanocomposites as a seed platform and characterised at sub-micron scale regime with synchrotron-based techniques; near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray fluorescence (XRF) mapping. In this report, it is shown that investigating polymer nanocomposites using combination of XRF mapping and NEXAFS spectromicroscopy can help to see the growth phenomenon from different perspective than conventional characterisation techniques. XRF maps are used to explore distribution of the constituent elements and showing how polymer matrix making stripe patterns along with regions where GNRs are formed. NEXAFS carbon (C) K-edge spectra have been taken at three different stages of synthesis: (1) on Au–PMMA nanocomposites before UV irradiation, (2) after gold nanoparticles formation, and (3) after GNRs formation. It reveals how polymer matrix has been degraded during GNRs formation and avoiding chemically or physically damage to polymer matrix is crucial to control the formation of GNRs.