Cargando…

MicroRNA-193a-3p inhibits cell proliferation in prostate cancer by targeting cyclin D1

MicroRNAs (miRNAs) are small non-coding RNAs that affect various biological processes by altering the expression of a target gene. An miRNA microarray analysis has previously revealed a significant decrease in miR-193a-3p levels in prostate cancer tissues compared with that in their benign prostate...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yunfu, Xu, Xin, Xu, Xianglai, Li, Shiqi, Liang, Zhen, Hu, Zhenghui, Wu, Jian, Zhu, Yi, Jin, Xiaodong, Wang, Xiao, Lin, Yiwei, Chen, Hong, Mao, Yeqing, Luo, Jindan, Zheng, Xiangyi, Xie, Liping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666665/
https://www.ncbi.nlm.nih.gov/pubmed/29142597
http://dx.doi.org/10.3892/ol.2017.6865
Descripción
Sumario:MicroRNAs (miRNAs) are small non-coding RNAs that affect various biological processes by altering the expression of a target gene. An miRNA microarray analysis has previously revealed a significant decrease in miR-193a-3p levels in prostate cancer tissues compared with that in their benign prostate hyperplasia counterparts. However, the role of miR-193a-3p has yet to be elucidated. In the present study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to evaluate the expression levels of miR-193a-3p in two human prostate cancer cell lines. Forced overexpression of miR-193a-3p was established by transfecting mimics into DU-145 and PC3 cell lines. Cell proliferation and the cell cycle were assessed using a cell viability assay, flow cytometry and a colony formation assay. In addition, the target gene of miR-193a-3p was determined by a luciferase assay, RT-qPCR and western blot analysis. The regulation of the cell cycle by miR-193a-3p was also evaluated by western blotting. The results demonstrated that miR-193a-3p expression levels were lower in prostate cancer cell lines as compared with the RWPE normal prostate epithelium cell line. Subsequent gain-of-function studies revealed that stable miR-193a-3p transfection inhibited cell viability, proliferation and colony formation, and induced G(1) phase arrest in prostate cancer cells. A luciferase assay and western blot analysis identified cyclin D1 (CCND1) as a direct target gene of miR-193a-3p. In addition, the forced expression of CCND1 was able to counter the inhibitory effects of miR-193a-3p transfection in the prostate cancer cells. In summary, the results suggest that miR-193a-3p may inhibit the viability, proliferation and survival of prostate cancer cells by regulating the expression profile of CCND1, and that miR-193a-3p may be a novel therapeutic biomarker for prostate cancer.