Cargando…
Ferritin Heavy Subunit Silencing Blocks the Erythroid Commitment of K562 Cells via miR-150 up-Regulation and GATA-1 Repression
Erythroid differentiation is a complex and multistep process during which an adequate supply of iron for hemoglobinization is required. The role of ferritin heavy subunit, in this process, has been mainly attributed to its capacity to maintain iron in a non-toxic form. We propose a new role for ferr...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666848/ https://www.ncbi.nlm.nih.gov/pubmed/29039805 http://dx.doi.org/10.3390/ijms18102167 |
_version_ | 1783275386988134400 |
---|---|
author | Zolea, Fabiana Battaglia, Anna Martina Chiarella, Emanuela Malanga, Donatella De Marco, Carmela Bond, Heather Mandy Morrone, Giovanni Costanzo, Francesco Biamonte, Flavia |
author_facet | Zolea, Fabiana Battaglia, Anna Martina Chiarella, Emanuela Malanga, Donatella De Marco, Carmela Bond, Heather Mandy Morrone, Giovanni Costanzo, Francesco Biamonte, Flavia |
author_sort | Zolea, Fabiana |
collection | PubMed |
description | Erythroid differentiation is a complex and multistep process during which an adequate supply of iron for hemoglobinization is required. The role of ferritin heavy subunit, in this process, has been mainly attributed to its capacity to maintain iron in a non-toxic form. We propose a new role for ferritin heavy subunit (FHC) in controlling the erythroid commitment of K562 erythro-myeloid cells. FHC knockdown induces a change in the balance of GATA transcription factors and significantly reduces the expression of a repertoire of erythroid-specific genes, including α- and γ-globins, as well as CD71 and CD235a surface markers, in the absence of differentiation stimuli. These molecular changes are also reflected at the morphological level. Moreover, the ability of FHC-silenced K562 cells to respond to the erythroid-specific inducer hemin is almost completely abolished. Interestingly, we found that this new role for FHC is largely mediated via regulation of miR-150, one of the main microRNA implicated in the cell-fate choice of common erythroid/megakaryocytic progenitors. These findings shed further insight into the biological properties of FHCand delineate a role in erythroid differentiation where this protein does not act as a mere iron metabolism-related factor but also as a critical regulator of the expression of genes of central relevance for erythropoiesis. |
format | Online Article Text |
id | pubmed-5666848 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-56668482017-11-09 Ferritin Heavy Subunit Silencing Blocks the Erythroid Commitment of K562 Cells via miR-150 up-Regulation and GATA-1 Repression Zolea, Fabiana Battaglia, Anna Martina Chiarella, Emanuela Malanga, Donatella De Marco, Carmela Bond, Heather Mandy Morrone, Giovanni Costanzo, Francesco Biamonte, Flavia Int J Mol Sci Article Erythroid differentiation is a complex and multistep process during which an adequate supply of iron for hemoglobinization is required. The role of ferritin heavy subunit, in this process, has been mainly attributed to its capacity to maintain iron in a non-toxic form. We propose a new role for ferritin heavy subunit (FHC) in controlling the erythroid commitment of K562 erythro-myeloid cells. FHC knockdown induces a change in the balance of GATA transcription factors and significantly reduces the expression of a repertoire of erythroid-specific genes, including α- and γ-globins, as well as CD71 and CD235a surface markers, in the absence of differentiation stimuli. These molecular changes are also reflected at the morphological level. Moreover, the ability of FHC-silenced K562 cells to respond to the erythroid-specific inducer hemin is almost completely abolished. Interestingly, we found that this new role for FHC is largely mediated via regulation of miR-150, one of the main microRNA implicated in the cell-fate choice of common erythroid/megakaryocytic progenitors. These findings shed further insight into the biological properties of FHCand delineate a role in erythroid differentiation where this protein does not act as a mere iron metabolism-related factor but also as a critical regulator of the expression of genes of central relevance for erythropoiesis. MDPI 2017-10-17 /pmc/articles/PMC5666848/ /pubmed/29039805 http://dx.doi.org/10.3390/ijms18102167 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zolea, Fabiana Battaglia, Anna Martina Chiarella, Emanuela Malanga, Donatella De Marco, Carmela Bond, Heather Mandy Morrone, Giovanni Costanzo, Francesco Biamonte, Flavia Ferritin Heavy Subunit Silencing Blocks the Erythroid Commitment of K562 Cells via miR-150 up-Regulation and GATA-1 Repression |
title | Ferritin Heavy Subunit Silencing Blocks the Erythroid Commitment of K562 Cells via miR-150 up-Regulation and GATA-1 Repression |
title_full | Ferritin Heavy Subunit Silencing Blocks the Erythroid Commitment of K562 Cells via miR-150 up-Regulation and GATA-1 Repression |
title_fullStr | Ferritin Heavy Subunit Silencing Blocks the Erythroid Commitment of K562 Cells via miR-150 up-Regulation and GATA-1 Repression |
title_full_unstemmed | Ferritin Heavy Subunit Silencing Blocks the Erythroid Commitment of K562 Cells via miR-150 up-Regulation and GATA-1 Repression |
title_short | Ferritin Heavy Subunit Silencing Blocks the Erythroid Commitment of K562 Cells via miR-150 up-Regulation and GATA-1 Repression |
title_sort | ferritin heavy subunit silencing blocks the erythroid commitment of k562 cells via mir-150 up-regulation and gata-1 repression |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666848/ https://www.ncbi.nlm.nih.gov/pubmed/29039805 http://dx.doi.org/10.3390/ijms18102167 |
work_keys_str_mv | AT zoleafabiana ferritinheavysubunitsilencingblockstheerythroidcommitmentofk562cellsviamir150upregulationandgata1repression AT battagliaannamartina ferritinheavysubunitsilencingblockstheerythroidcommitmentofk562cellsviamir150upregulationandgata1repression AT chiarellaemanuela ferritinheavysubunitsilencingblockstheerythroidcommitmentofk562cellsviamir150upregulationandgata1repression AT malangadonatella ferritinheavysubunitsilencingblockstheerythroidcommitmentofk562cellsviamir150upregulationandgata1repression AT demarcocarmela ferritinheavysubunitsilencingblockstheerythroidcommitmentofk562cellsviamir150upregulationandgata1repression AT bondheathermandy ferritinheavysubunitsilencingblockstheerythroidcommitmentofk562cellsviamir150upregulationandgata1repression AT morronegiovanni ferritinheavysubunitsilencingblockstheerythroidcommitmentofk562cellsviamir150upregulationandgata1repression AT costanzofrancesco ferritinheavysubunitsilencingblockstheerythroidcommitmentofk562cellsviamir150upregulationandgata1repression AT biamonteflavia ferritinheavysubunitsilencingblockstheerythroidcommitmentofk562cellsviamir150upregulationandgata1repression |