Cargando…
Application of Magnetic Force Microscopy for Investigation of Epitaxial Ferro- and Antiferromagnetic Structures
Growing of epitaxial Fe(50)Mn(50)/Fe/Mo/R-sapphire films was performed with a new configuration of two in-plane easy axes of Fe(001)-layer magnetization in which application of annealing in a magnetic field forms an unidirectional anisotropy. The microstructures made from these films exhibited an ex...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666962/ https://www.ncbi.nlm.nih.gov/pubmed/28976935 http://dx.doi.org/10.3390/ma10101156 |
_version_ | 1783275413957509120 |
---|---|
author | Mikhailov, Gennady M. Chernykh, Anatoliy V. Fomin, Lev A. |
author_facet | Mikhailov, Gennady M. Chernykh, Anatoliy V. Fomin, Lev A. |
author_sort | Mikhailov, Gennady M. |
collection | PubMed |
description | Growing of epitaxial Fe(50)Mn(50)/Fe/Mo/R-sapphire films was performed with a new configuration of two in-plane easy axes of Fe(001)-layer magnetization in which application of annealing in a magnetic field forms an unidirectional anisotropy. The microstructures made from these films exhibited an exchange bias 25–35 G along an exchange field generated at antiferromagnet/ferromagnet (AFM/FM) interface. Magnetic force microscopy (MFM) experiments supported by micromagnetic calculations and magneto-resistive measurements allowed interpretation of the magnetic states of the Fe layer in these microstructures. The magnetic states of the iron layer are influenced more by crystallographic anisotropy of the Fe-layer than by unidirectional exchange anisotropy. |
format | Online Article Text |
id | pubmed-5666962 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-56669622017-11-09 Application of Magnetic Force Microscopy for Investigation of Epitaxial Ferro- and Antiferromagnetic Structures Mikhailov, Gennady M. Chernykh, Anatoliy V. Fomin, Lev A. Materials (Basel) Article Growing of epitaxial Fe(50)Mn(50)/Fe/Mo/R-sapphire films was performed with a new configuration of two in-plane easy axes of Fe(001)-layer magnetization in which application of annealing in a magnetic field forms an unidirectional anisotropy. The microstructures made from these films exhibited an exchange bias 25–35 G along an exchange field generated at antiferromagnet/ferromagnet (AFM/FM) interface. Magnetic force microscopy (MFM) experiments supported by micromagnetic calculations and magneto-resistive measurements allowed interpretation of the magnetic states of the Fe layer in these microstructures. The magnetic states of the iron layer are influenced more by crystallographic anisotropy of the Fe-layer than by unidirectional exchange anisotropy. MDPI 2017-10-06 /pmc/articles/PMC5666962/ /pubmed/28976935 http://dx.doi.org/10.3390/ma10101156 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mikhailov, Gennady M. Chernykh, Anatoliy V. Fomin, Lev A. Application of Magnetic Force Microscopy for Investigation of Epitaxial Ferro- and Antiferromagnetic Structures |
title | Application of Magnetic Force Microscopy for Investigation of Epitaxial Ferro- and Antiferromagnetic Structures |
title_full | Application of Magnetic Force Microscopy for Investigation of Epitaxial Ferro- and Antiferromagnetic Structures |
title_fullStr | Application of Magnetic Force Microscopy for Investigation of Epitaxial Ferro- and Antiferromagnetic Structures |
title_full_unstemmed | Application of Magnetic Force Microscopy for Investigation of Epitaxial Ferro- and Antiferromagnetic Structures |
title_short | Application of Magnetic Force Microscopy for Investigation of Epitaxial Ferro- and Antiferromagnetic Structures |
title_sort | application of magnetic force microscopy for investigation of epitaxial ferro- and antiferromagnetic structures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666962/ https://www.ncbi.nlm.nih.gov/pubmed/28976935 http://dx.doi.org/10.3390/ma10101156 |
work_keys_str_mv | AT mikhailovgennadym applicationofmagneticforcemicroscopyforinvestigationofepitaxialferroandantiferromagneticstructures AT chernykhanatoliyv applicationofmagneticforcemicroscopyforinvestigationofepitaxialferroandantiferromagneticstructures AT fominleva applicationofmagneticforcemicroscopyforinvestigationofepitaxialferroandantiferromagneticstructures |