Cargando…
Effect of Wafer Level Underfill on the Microbump Reliability of Ultrathin-Chip Stacking Type 3D-IC Assembly during Thermal Cycling Tests
The microbump (μ-bump) reliability of 3D integrated circuit (3D-IC) packaging must be enhanced, in consideration of the multi-chip assembly, during temperature cycling tests (TCT). This research proposes vehicle fabrications, experimental implements, and a nonlinear finite element analysis to system...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5667026/ https://www.ncbi.nlm.nih.gov/pubmed/29064435 http://dx.doi.org/10.3390/ma10101220 |
Sumario: | The microbump (μ-bump) reliability of 3D integrated circuit (3D-IC) packaging must be enhanced, in consideration of the multi-chip assembly, during temperature cycling tests (TCT). This research proposes vehicle fabrications, experimental implements, and a nonlinear finite element analysis to systematically investigate the assembled packaging architecture that stacks four thin chips through the wafer level underfill (WLUF) process. The assembly of μ-bump interconnects by daisy chain design shows good quality. Results of both TCT data and the simulation indicate that μ-bumps with residual SnAg solders can reach more than 1200 fatigue life cycles. Moreover, several important design factors in the present 3D-IC package influence μ-bump reliability. Analytical results show that the μ-bump’s thermo-mechanical reliability can be improved by setting proper chip thickness, along with a WLUF that has a low elastic modulus and a small coefficient of thermal expansion. |
---|