Cargando…
A global moderate resolution dataset of gross primary production of vegetation for 2000–2016
Accurate estimation of the gross primary production (GPP) of terrestrial vegetation is vital for understanding the global carbon cycle and predicting future climate change. Multiple GPP products are currently available based on different methods, but their performances vary substantially when valida...
Autores principales: | Zhang, Yao, Xiao, Xiangming, Wu, Xiaocui, Zhou, Sha, Zhang, Geli, Qin, Yuanwei, Dong, Jinwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5667571/ https://www.ncbi.nlm.nih.gov/pubmed/29064464 http://dx.doi.org/10.1038/sdata.2017.165 |
Ejemplares similares
-
Author Correction: A global moderate resolution dataset of gross primary production of vegetation for 2000–2016
por: Zhang, Yao, et al.
Publicado: (2021) -
High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data
por: Singha, Mrinal, et al.
Publicado: (2019) -
A global 0.05° dataset for gross primary production of sunlit and shaded vegetation canopies from 1992 to 2020
por: Bi, Wenjun, et al.
Publicado: (2022) -
A dataset on affiliation of venture capitalists in China between 2000 and 2016
por: Chen, Jin, et al.
Publicado: (2021) -
An improved global vegetation health index dataset in detecting vegetation drought
por: Zeng, Jingyu, et al.
Publicado: (2023)