Cargando…

Skeletal muscle contraction-induced vasodilation in the microcirculation

Maximal whole body exercise leads skeletal muscle blood flow to markedly increase to match metabolic demands, a phenomenon termed exercise hyperaemia that is accomplished by increasing vasodilation. However, local vasodilatory mechanisms in response to skeletal muscle contraction remain uncertain. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Kwang-Seok, Kim, Kijeong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Exercise Rehabilitation 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5667595/
https://www.ncbi.nlm.nih.gov/pubmed/29114523
http://dx.doi.org/10.12965/jer.1735114.557
Descripción
Sumario:Maximal whole body exercise leads skeletal muscle blood flow to markedly increase to match metabolic demands, a phenomenon termed exercise hyperaemia that is accomplished by increasing vasodilation. However, local vasodilatory mechanisms in response to skeletal muscle contraction remain uncertain. This review highlights metabolic vasodilators released from contracting skeletal muscle, endothelium, or blood cells. As a considerable skeletal muscle vasodilation potentially results in hypotension, sympathetic nerve activity needs to be augmented to elevate cardiac output and blood pressure during dynamic exercise. However, since the enhanced sympathetic vasoconstriction restrains skeletal muscle blood flow, intramuscular arteries have an indispensable ability to blunt sympathetic activity for exercise hyperaemia. In addition, we discuss that mechanical compression of the intramuscular vasculature contributes to causing the initial phase of increasing vasodilation following a single muscle contraction. We have also chosen to focus on conducted (or ascending) electrical signals that evoke vasodilation of proximal feed arteries to elevate blood flow in the microcirculation of skeletal muscle. Endothelial hyperpolarization originating within distal arterioles ascends into the proximal feed arteries, thereby increasing total blood flow in contracting skeletal muscle. This brief review summarizes molecular mechanisms underlying the regulation of skeletal muscle blood flow to a single or sustained muscle contraction.