Cargando…
Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database
Deep learning emerges as a powerful tool for analyzing medical images. Retinal disease detection by using computer-aided diagnosis from fundus image has emerged as a new method. We applied deep learning convolutional neural network by using MatConvNet for an automated detection of multiple retinal d...
Autores principales: | Choi, Joon Yul, Yoo, Tae Keun, Seo, Jeong Gi, Kwak, Jiyong, Um, Terry Taewoong, Rim, Tyler Hyungtaek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5667846/ https://www.ncbi.nlm.nih.gov/pubmed/29095872 http://dx.doi.org/10.1371/journal.pone.0187336 |
Ejemplares similares
-
The analysis of cross-classified categorical data
por: Fienberg, Stephen E.
Publicado: (1980) -
The analysis of cross-classified categorical data
por: Fienberg, Stephen E
Publicado: (2007) -
The incidence and prevalence of pterygium in South Korea: A 10-year population-based Korean cohort study
por: Rim, Tyler Hyungtaek, et al.
Publicado: (2017) -
Feasibility study to improve deep learning in OCT diagnosis of rare retinal diseases with few-shot classification
por: Yoo, Tae Keun, et al.
Publicado: (2021) -
Four-year nationwide incidence of retinitis pigmentosa in South Korea: a population-based retrospective study from 2011 to 2014
por: Rim, Tyler Hyungtaek, et al.
Publicado: (2017)