Cargando…
Chromosome preference of disease genes and vectorization for the prediction of non-coding disease genes
Disease-related protein-coding genes have been widely studied, but disease-related non-coding genes remain largely unknown. This work introduces a new vector to represent diseases, and applies the newly vectorized data for a positive-unlabeled learning algorithm to predict and rank disease-related l...
Autores principales: | Peng, Hui, Lan, Chaowang, Liu, Yuansheng, Liu, Tao, Blumenstein, Michael, Li, Jinyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668007/ https://www.ncbi.nlm.nih.gov/pubmed/29108274 http://dx.doi.org/10.18632/oncotarget.20481 |
Ejemplares similares
-
Cross disease analysis of co-functional microRNA pairs on a reconstructed network of disease-gene-microRNA tripartite
por: Peng, Hui, et al.
Publicado: (2017) -
Instance-based error correction for short reads of disease-associated genes
por: Zhang, Xuan, et al.
Publicado: (2021) -
Grouping miRNAs of similar functions via weighted information content of gene ontology
por: Lan, Chaowang, et al.
Publicado: (2016) -
Inverse similarity and reliable negative samples for drug side-effect prediction
por: Zheng, Yi, et al.
Publicado: (2019) -
Imbalance learning for the prediction of N(6)-Methylation sites in mRNAs
por: Zhao, Zhixun, et al.
Publicado: (2018)