Cargando…

An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis

KEY MESSAGE: We constructed the first integrated genetic linkage map in a polysomic hexaploid. This enabled us to estimate inheritance of parental haplotypes in the offspring and detect multi-allelic QTL. ABSTRACT: Construction and use of linkage maps are challenging in hexaploids with polysomic inh...

Descripción completa

Detalles Bibliográficos
Autores principales: van Geest, Geert, Bourke, Peter M., Voorrips, Roeland E., Marasek-Ciolakowska, Agnieszka, Liao, Yanlin, Post, Aike, van Meeteren, Uulke, Visser, Richard G. F., Maliepaard, Chris, Arens, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668331/
https://www.ncbi.nlm.nih.gov/pubmed/28852802
http://dx.doi.org/10.1007/s00122-017-2974-5
_version_ 1783275651199926272
author van Geest, Geert
Bourke, Peter M.
Voorrips, Roeland E.
Marasek-Ciolakowska, Agnieszka
Liao, Yanlin
Post, Aike
van Meeteren, Uulke
Visser, Richard G. F.
Maliepaard, Chris
Arens, Paul
author_facet van Geest, Geert
Bourke, Peter M.
Voorrips, Roeland E.
Marasek-Ciolakowska, Agnieszka
Liao, Yanlin
Post, Aike
van Meeteren, Uulke
Visser, Richard G. F.
Maliepaard, Chris
Arens, Paul
author_sort van Geest, Geert
collection PubMed
description KEY MESSAGE: We constructed the first integrated genetic linkage map in a polysomic hexaploid. This enabled us to estimate inheritance of parental haplotypes in the offspring and detect multi-allelic QTL. ABSTRACT: Construction and use of linkage maps are challenging in hexaploids with polysomic inheritance. Full map integration requires calculations of recombination frequency between markers with complex segregation types. In addition, detection of QTL in hexaploids requires information on all six alleles at one locus for each individual. We describe a method that we used to construct a fully integrated linkage map for chrysanthemum (Chrysanthemum × morifolium, 2n = 6x = 54). A bi-parental F1 population of 406 individuals was genotyped with an 183,000 SNP genotyping array. The resulting linkage map consisted of 30,312 segregating SNP markers of all possible marker dosage types, representing nine chromosomal linkage groups and 107 out of 108 expected homologues. Synteny with lettuce (Lactuca sativa) showed local colinearity. Overall, it was high enough to number the chrysanthemum chromosomal linkage groups according to those in lettuce. We used the integrated and phased linkage map to reconstruct inheritance of parental haplotypes in the F1 population. Estimated probabilities for the parental haplotypes were used for multi-allelic QTL analyses on four traits with different underlying genetic architectures. This resulted in the identification of major QTL that were affected by multiple alleles having a differential effect on the phenotype. The presented linkage map sets a standard for future genetic mapping analyses in chrysanthemum and closely related species. Moreover, the described methods are a major step forward for linkage mapping and QTL analysis in hexaploids. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00122-017-2974-5) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5668331
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-56683312017-11-16 An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis van Geest, Geert Bourke, Peter M. Voorrips, Roeland E. Marasek-Ciolakowska, Agnieszka Liao, Yanlin Post, Aike van Meeteren, Uulke Visser, Richard G. F. Maliepaard, Chris Arens, Paul Theor Appl Genet Original Article KEY MESSAGE: We constructed the first integrated genetic linkage map in a polysomic hexaploid. This enabled us to estimate inheritance of parental haplotypes in the offspring and detect multi-allelic QTL. ABSTRACT: Construction and use of linkage maps are challenging in hexaploids with polysomic inheritance. Full map integration requires calculations of recombination frequency between markers with complex segregation types. In addition, detection of QTL in hexaploids requires information on all six alleles at one locus for each individual. We describe a method that we used to construct a fully integrated linkage map for chrysanthemum (Chrysanthemum × morifolium, 2n = 6x = 54). A bi-parental F1 population of 406 individuals was genotyped with an 183,000 SNP genotyping array. The resulting linkage map consisted of 30,312 segregating SNP markers of all possible marker dosage types, representing nine chromosomal linkage groups and 107 out of 108 expected homologues. Synteny with lettuce (Lactuca sativa) showed local colinearity. Overall, it was high enough to number the chrysanthemum chromosomal linkage groups according to those in lettuce. We used the integrated and phased linkage map to reconstruct inheritance of parental haplotypes in the F1 population. Estimated probabilities for the parental haplotypes were used for multi-allelic QTL analyses on four traits with different underlying genetic architectures. This resulted in the identification of major QTL that were affected by multiple alleles having a differential effect on the phenotype. The presented linkage map sets a standard for future genetic mapping analyses in chrysanthemum and closely related species. Moreover, the described methods are a major step forward for linkage mapping and QTL analysis in hexaploids. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00122-017-2974-5) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2017-08-29 2017 /pmc/articles/PMC5668331/ /pubmed/28852802 http://dx.doi.org/10.1007/s00122-017-2974-5 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Original Article
van Geest, Geert
Bourke, Peter M.
Voorrips, Roeland E.
Marasek-Ciolakowska, Agnieszka
Liao, Yanlin
Post, Aike
van Meeteren, Uulke
Visser, Richard G. F.
Maliepaard, Chris
Arens, Paul
An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis
title An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis
title_full An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis
title_fullStr An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis
title_full_unstemmed An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis
title_short An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis
title_sort ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic qtl analysis
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668331/
https://www.ncbi.nlm.nih.gov/pubmed/28852802
http://dx.doi.org/10.1007/s00122-017-2974-5
work_keys_str_mv AT vangeestgeert anultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT bourkepeterm anultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT voorripsroelande anultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT marasekciolakowskaagnieszka anultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT liaoyanlin anultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT postaike anultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT vanmeeterenuulke anultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT visserrichardgf anultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT maliepaardchris anultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT arenspaul anultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT vangeestgeert ultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT bourkepeterm ultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT voorripsroelande ultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT marasekciolakowskaagnieszka ultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT liaoyanlin ultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT postaike ultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT vanmeeterenuulke ultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT visserrichardgf ultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT maliepaardchris ultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis
AT arenspaul ultradenseintegratedlinkagemapforhexaploidchrysanthemumenablesmultiallelicqtlanalysis