Cargando…
Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd(3)As(2)
Owing to the coupling between open Fermi arcs on opposite surfaces, topological Dirac semimetals exhibit a new type of cyclotron orbit in the surface states known as Weyl orbit. Here, by lowering the carrier density in Cd(3)As(2) nanoplates, we observe a crossover from multiple-frequency to single-f...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668429/ https://www.ncbi.nlm.nih.gov/pubmed/29097658 http://dx.doi.org/10.1038/s41467-017-01438-y |
_version_ | 1783275674106068992 |
---|---|
author | Zhang, Cheng Narayan, Awadhesh Lu, Shiheng Zhang, Jinglei Zhang, Huiqin Ni, Zhuoliang Yuan, Xiang Liu, Yanwen Park, Ju-Hyun Zhang, Enze Wang, Weiyi Liu, Shanshan Cheng, Long Pi, Li Sheng, Zhigao Sanvito, Stefano Xiu, Faxian |
author_facet | Zhang, Cheng Narayan, Awadhesh Lu, Shiheng Zhang, Jinglei Zhang, Huiqin Ni, Zhuoliang Yuan, Xiang Liu, Yanwen Park, Ju-Hyun Zhang, Enze Wang, Weiyi Liu, Shanshan Cheng, Long Pi, Li Sheng, Zhigao Sanvito, Stefano Xiu, Faxian |
author_sort | Zhang, Cheng |
collection | PubMed |
description | Owing to the coupling between open Fermi arcs on opposite surfaces, topological Dirac semimetals exhibit a new type of cyclotron orbit in the surface states known as Weyl orbit. Here, by lowering the carrier density in Cd(3)As(2) nanoplates, we observe a crossover from multiple-frequency to single-frequency Shubnikov–de Haas (SdH) oscillations when subjected to out-of-plane magnetic field, indicating the dominant role of surface transport. With the increase of magnetic field, the SdH oscillations further develop into quantum Hall state with non-vanishing longitudinal resistance. By tracking the oscillation frequency and Hall plateau, we observe a Zeeman-related splitting and extract the Landau level index as well as sub-band number. Different from conventional two-dimensional systems, this unique quantum Hall effect may be related to the quantized version of Weyl orbits. Our results call for further investigations into the exotic quantum Hall states in the low-dimensional structure of topological semimetals. |
format | Online Article Text |
id | pubmed-5668429 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-56684292017-11-07 Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd(3)As(2) Zhang, Cheng Narayan, Awadhesh Lu, Shiheng Zhang, Jinglei Zhang, Huiqin Ni, Zhuoliang Yuan, Xiang Liu, Yanwen Park, Ju-Hyun Zhang, Enze Wang, Weiyi Liu, Shanshan Cheng, Long Pi, Li Sheng, Zhigao Sanvito, Stefano Xiu, Faxian Nat Commun Article Owing to the coupling between open Fermi arcs on opposite surfaces, topological Dirac semimetals exhibit a new type of cyclotron orbit in the surface states known as Weyl orbit. Here, by lowering the carrier density in Cd(3)As(2) nanoplates, we observe a crossover from multiple-frequency to single-frequency Shubnikov–de Haas (SdH) oscillations when subjected to out-of-plane magnetic field, indicating the dominant role of surface transport. With the increase of magnetic field, the SdH oscillations further develop into quantum Hall state with non-vanishing longitudinal resistance. By tracking the oscillation frequency and Hall plateau, we observe a Zeeman-related splitting and extract the Landau level index as well as sub-band number. Different from conventional two-dimensional systems, this unique quantum Hall effect may be related to the quantized version of Weyl orbits. Our results call for further investigations into the exotic quantum Hall states in the low-dimensional structure of topological semimetals. Nature Publishing Group UK 2017-11-02 /pmc/articles/PMC5668429/ /pubmed/29097658 http://dx.doi.org/10.1038/s41467-017-01438-y Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Zhang, Cheng Narayan, Awadhesh Lu, Shiheng Zhang, Jinglei Zhang, Huiqin Ni, Zhuoliang Yuan, Xiang Liu, Yanwen Park, Ju-Hyun Zhang, Enze Wang, Weiyi Liu, Shanshan Cheng, Long Pi, Li Sheng, Zhigao Sanvito, Stefano Xiu, Faxian Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd(3)As(2) |
title | Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd(3)As(2) |
title_full | Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd(3)As(2) |
title_fullStr | Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd(3)As(2) |
title_full_unstemmed | Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd(3)As(2) |
title_short | Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd(3)As(2) |
title_sort | evolution of weyl orbit and quantum hall effect in dirac semimetal cd(3)as(2) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668429/ https://www.ncbi.nlm.nih.gov/pubmed/29097658 http://dx.doi.org/10.1038/s41467-017-01438-y |
work_keys_str_mv | AT zhangcheng evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 AT narayanawadhesh evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 AT lushiheng evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 AT zhangjinglei evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 AT zhanghuiqin evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 AT nizhuoliang evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 AT yuanxiang evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 AT liuyanwen evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 AT parkjuhyun evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 AT zhangenze evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 AT wangweiyi evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 AT liushanshan evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 AT chenglong evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 AT pili evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 AT shengzhigao evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 AT sanvitostefano evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 AT xiufaxian evolutionofweylorbitandquantumhalleffectindiracsemimetalcd3as2 |