Cargando…
Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters
In the article, we present the best possible parameters [Formula: see text] and [Formula: see text] on the interval [Formula: see text] such that the double inequality [Formula: see text] holds for any [Formula: see text] and all [Formula: see text] with [Formula: see text] , where [Formula: see tex...
Autores principales: | Qian, Wei-Mao, Chu, Yu-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668438/ https://www.ncbi.nlm.nih.gov/pubmed/29151708 http://dx.doi.org/10.1186/s13660-017-1550-5 |
Ejemplares similares
-
Sharp bounds for the Sándor–Yang means in terms of arithmetic and contra-harmonic means
por: Xu, Hui-Zuo, et al.
Publicado: (2018) -
Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean
por: Ding, Qing, et al.
Publicado: (2017) -
Bounds for Combinations of Toader Mean and Arithmetic Mean in Terms of Centroidal Mean
por: Jiang, Wei-Dong
Publicado: (2013) -
Optimal inequalities for bounding Toader mean by arithmetic and quadratic means
por: Zhao, Tie-Hong, et al.
Publicado: (2017) -
Weighted arithmetic–geometric operator mean inequalities
por: Xue, Jianming
Publicado: (2018)