Cargando…
Thermomechanical effect in molecular crystals: the role of halogen-bonding interactions
The design and synthesis of mechanically responsive materials is interesting because they are potential candidates to convert thermal energy into mechanical work. Reported in this paper are thermosalient effects in a series of halogen derivatives of salinazids. The chloro derivative, with higher ele...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668866/ https://www.ncbi.nlm.nih.gov/pubmed/29123683 http://dx.doi.org/10.1107/S2052252517014658 |
_version_ | 1783275750905872384 |
---|---|
author | Mittapalli, Sudhir Perumalla, D. Sravanakumar Nanubolu, Jagadeesh Babu Nangia, Ashwini |
author_facet | Mittapalli, Sudhir Perumalla, D. Sravanakumar Nanubolu, Jagadeesh Babu Nangia, Ashwini |
author_sort | Mittapalli, Sudhir |
collection | PubMed |
description | The design and synthesis of mechanically responsive materials is interesting because they are potential candidates to convert thermal energy into mechanical work. Reported in this paper are thermosalient effects in a series of halogen derivatives of salinazids. The chloro derivative, with higher electronegativity and a weaker inter-halogen bond strength (Cl⋯Cl) exhibits an excellent thermal response, whereas the response is weaker in the iodo derivative with stronger I⋯I halogen bonding. 3,5-Dichlorosalinazid (Compound-A) exists in three polymorphic forms, two room-temperature polymorphs (Forms I and II) and one high-temperature modification (Form III). The transformation of Form I to Form III upon heating at 328–333 K is a reversible thermosalient transition, whereas the transformation of Form II to Form III is irreversible and non-thermosalient. 3,5-Dibromo- (Compound-B) and 3-bromo-5-chloro- (Compound-C) salinazid are both dimorphic: the Form I to Form II transition in Compound-B is irreversible, whereas Compound-C shows a reversible thermosalient effect (362–365 K). In the case of 3,5-diiodosalinazid (Compound-D) and 3,5-difluorosalinazid (Compound-E), no phase transitions or thermal effects were observed. The thermosalient behaviour of these halosalinazid molecular crystals is understood from the anisotropy in the cell parameters (an increase in the a axis and a decrease in the b and c axes upon heating) and the sudden release of accumulated strain during the phase transition. The di-halogen salinazid derivatives (chlorine to iodine) show a decrease in thermal effects with an increase in halogen-bond strength. Interestingly, Compound-B shows solid-state photochromism in its polymorphs along with the thermosalient effect, wherein Form I is cyan and Form II is light orange. |
format | Online Article Text |
id | pubmed-5668866 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-56688662017-11-09 Thermomechanical effect in molecular crystals: the role of halogen-bonding interactions Mittapalli, Sudhir Perumalla, D. Sravanakumar Nanubolu, Jagadeesh Babu Nangia, Ashwini IUCrJ Research Papers The design and synthesis of mechanically responsive materials is interesting because they are potential candidates to convert thermal energy into mechanical work. Reported in this paper are thermosalient effects in a series of halogen derivatives of salinazids. The chloro derivative, with higher electronegativity and a weaker inter-halogen bond strength (Cl⋯Cl) exhibits an excellent thermal response, whereas the response is weaker in the iodo derivative with stronger I⋯I halogen bonding. 3,5-Dichlorosalinazid (Compound-A) exists in three polymorphic forms, two room-temperature polymorphs (Forms I and II) and one high-temperature modification (Form III). The transformation of Form I to Form III upon heating at 328–333 K is a reversible thermosalient transition, whereas the transformation of Form II to Form III is irreversible and non-thermosalient. 3,5-Dibromo- (Compound-B) and 3-bromo-5-chloro- (Compound-C) salinazid are both dimorphic: the Form I to Form II transition in Compound-B is irreversible, whereas Compound-C shows a reversible thermosalient effect (362–365 K). In the case of 3,5-diiodosalinazid (Compound-D) and 3,5-difluorosalinazid (Compound-E), no phase transitions or thermal effects were observed. The thermosalient behaviour of these halosalinazid molecular crystals is understood from the anisotropy in the cell parameters (an increase in the a axis and a decrease in the b and c axes upon heating) and the sudden release of accumulated strain during the phase transition. The di-halogen salinazid derivatives (chlorine to iodine) show a decrease in thermal effects with an increase in halogen-bond strength. Interestingly, Compound-B shows solid-state photochromism in its polymorphs along with the thermosalient effect, wherein Form I is cyan and Form II is light orange. International Union of Crystallography 2017-10-27 /pmc/articles/PMC5668866/ /pubmed/29123683 http://dx.doi.org/10.1107/S2052252517014658 Text en © Sudhir Mittapalli et al. 2017 http://creativecommons.org/licenses/by/2.0/uk/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/2.0/uk/ |
spellingShingle | Research Papers Mittapalli, Sudhir Perumalla, D. Sravanakumar Nanubolu, Jagadeesh Babu Nangia, Ashwini Thermomechanical effect in molecular crystals: the role of halogen-bonding interactions |
title | Thermomechanical effect in molecular crystals: the role of halogen-bonding interactions |
title_full | Thermomechanical effect in molecular crystals: the role of halogen-bonding interactions |
title_fullStr | Thermomechanical effect in molecular crystals: the role of halogen-bonding interactions |
title_full_unstemmed | Thermomechanical effect in molecular crystals: the role of halogen-bonding interactions |
title_short | Thermomechanical effect in molecular crystals: the role of halogen-bonding interactions |
title_sort | thermomechanical effect in molecular crystals: the role of halogen-bonding interactions |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668866/ https://www.ncbi.nlm.nih.gov/pubmed/29123683 http://dx.doi.org/10.1107/S2052252517014658 |
work_keys_str_mv | AT mittapallisudhir thermomechanicaleffectinmolecularcrystalstheroleofhalogenbondinginteractions AT perumalladsravanakumar thermomechanicaleffectinmolecularcrystalstheroleofhalogenbondinginteractions AT nanubolujagadeeshbabu thermomechanicaleffectinmolecularcrystalstheroleofhalogenbondinginteractions AT nangiaashwini thermomechanicaleffectinmolecularcrystalstheroleofhalogenbondinginteractions |