Cargando…

Detection of long repeat expansions from PCR-free whole-genome sequence data

Identifying large expansions of short tandem repeats (STRs), such as those that cause amyotrophic lateral sclerosis (ALS) and fragile X syndrome, is challenging for short-read whole-genome sequencing (WGS) data. A solution to this problem is an important step toward integrating WGS into precision me...

Descripción completa

Detalles Bibliográficos
Autores principales: Dolzhenko, Egor, van Vugt, Joke J.F.A., Shaw, Richard J., Bekritsky, Mitchell A., van Blitterswijk, Marka, Narzisi, Giuseppe, Ajay, Subramanian S., Rajan, Vani, Lajoie, Bryan R., Johnson, Nathan H., Kingsbury, Zoya, Humphray, Sean J., Schellevis, Raymond D., Brands, William J., Baker, Matt, Rademakers, Rosa, Kooyman, Maarten, Tazelaar, Gijs H.P., van Es, Michael A., McLaughlin, Russell, Sproviero, William, Shatunov, Aleksey, Jones, Ashley, Al Khleifat, Ahmad, Pittman, Alan, Morgan, Sarah, Hardiman, Orla, Al-Chalabi, Ammar, Shaw, Chris, Smith, Bradley, Neo, Edmund J., Morrison, Karen, Shaw, Pamela J., Reeves, Catherine, Winterkorn, Lara, Wexler, Nancy S., Housman, David E., Ng, Christopher W., Li, Alina L., Taft, Ryan J., van den Berg, Leonard H., Bentley, David R., Veldink, Jan H., Eberle, Michael A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668946/
https://www.ncbi.nlm.nih.gov/pubmed/28887402
http://dx.doi.org/10.1101/gr.225672.117
_version_ 1783275765721202688
author Dolzhenko, Egor
van Vugt, Joke J.F.A.
Shaw, Richard J.
Bekritsky, Mitchell A.
van Blitterswijk, Marka
Narzisi, Giuseppe
Ajay, Subramanian S.
Rajan, Vani
Lajoie, Bryan R.
Johnson, Nathan H.
Kingsbury, Zoya
Humphray, Sean J.
Schellevis, Raymond D.
Brands, William J.
Baker, Matt
Rademakers, Rosa
Kooyman, Maarten
Tazelaar, Gijs H.P.
van Es, Michael A.
McLaughlin, Russell
Sproviero, William
Shatunov, Aleksey
Jones, Ashley
Al Khleifat, Ahmad
Pittman, Alan
Morgan, Sarah
Hardiman, Orla
Al-Chalabi, Ammar
Shaw, Chris
Smith, Bradley
Neo, Edmund J.
Morrison, Karen
Shaw, Pamela J.
Reeves, Catherine
Winterkorn, Lara
Wexler, Nancy S.
Housman, David E.
Ng, Christopher W.
Li, Alina L.
Taft, Ryan J.
van den Berg, Leonard H.
Bentley, David R.
Veldink, Jan H.
Eberle, Michael A.
author_facet Dolzhenko, Egor
van Vugt, Joke J.F.A.
Shaw, Richard J.
Bekritsky, Mitchell A.
van Blitterswijk, Marka
Narzisi, Giuseppe
Ajay, Subramanian S.
Rajan, Vani
Lajoie, Bryan R.
Johnson, Nathan H.
Kingsbury, Zoya
Humphray, Sean J.
Schellevis, Raymond D.
Brands, William J.
Baker, Matt
Rademakers, Rosa
Kooyman, Maarten
Tazelaar, Gijs H.P.
van Es, Michael A.
McLaughlin, Russell
Sproviero, William
Shatunov, Aleksey
Jones, Ashley
Al Khleifat, Ahmad
Pittman, Alan
Morgan, Sarah
Hardiman, Orla
Al-Chalabi, Ammar
Shaw, Chris
Smith, Bradley
Neo, Edmund J.
Morrison, Karen
Shaw, Pamela J.
Reeves, Catherine
Winterkorn, Lara
Wexler, Nancy S.
Housman, David E.
Ng, Christopher W.
Li, Alina L.
Taft, Ryan J.
van den Berg, Leonard H.
Bentley, David R.
Veldink, Jan H.
Eberle, Michael A.
author_sort Dolzhenko, Egor
collection PubMed
description Identifying large expansions of short tandem repeats (STRs), such as those that cause amyotrophic lateral sclerosis (ALS) and fragile X syndrome, is challenging for short-read whole-genome sequencing (WGS) data. A solution to this problem is an important step toward integrating WGS into precision medicine. We developed a software tool called ExpansionHunter that, using PCR-free WGS short-read data, can genotype repeats at the locus of interest, even if the expanded repeat is larger than the read length. We applied our algorithm to WGS data from 3001 ALS patients who have been tested for the presence of the C9orf72 repeat expansion with repeat-primed PCR (RP-PCR). Compared against this truth data, ExpansionHunter correctly classified all (212/212, 95% CI [0.98, 1.00]) of the expanded samples as either expansions (208) or potential expansions (4). Additionally, 99.9% (2786/2789, 95% CI [0.997, 1.00]) of the wild-type samples were correctly classified as wild type by this method with the remaining three samples identified as possible expansions. We further applied our algorithm to a set of 152 samples in which every sample had one of eight different pathogenic repeat expansions, including those associated with fragile X syndrome, Friedreich's ataxia, and Huntington's disease, and correctly flagged all but one of the known repeat expansions. Thus, ExpansionHunter can be used to accurately detect known pathogenic repeat expansions and provides researchers with a tool that can be used to identify new pathogenic repeat expansions.
format Online
Article
Text
id pubmed-5668946
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-56689462017-11-13 Detection of long repeat expansions from PCR-free whole-genome sequence data Dolzhenko, Egor van Vugt, Joke J.F.A. Shaw, Richard J. Bekritsky, Mitchell A. van Blitterswijk, Marka Narzisi, Giuseppe Ajay, Subramanian S. Rajan, Vani Lajoie, Bryan R. Johnson, Nathan H. Kingsbury, Zoya Humphray, Sean J. Schellevis, Raymond D. Brands, William J. Baker, Matt Rademakers, Rosa Kooyman, Maarten Tazelaar, Gijs H.P. van Es, Michael A. McLaughlin, Russell Sproviero, William Shatunov, Aleksey Jones, Ashley Al Khleifat, Ahmad Pittman, Alan Morgan, Sarah Hardiman, Orla Al-Chalabi, Ammar Shaw, Chris Smith, Bradley Neo, Edmund J. Morrison, Karen Shaw, Pamela J. Reeves, Catherine Winterkorn, Lara Wexler, Nancy S. Housman, David E. Ng, Christopher W. Li, Alina L. Taft, Ryan J. van den Berg, Leonard H. Bentley, David R. Veldink, Jan H. Eberle, Michael A. Genome Res Method Identifying large expansions of short tandem repeats (STRs), such as those that cause amyotrophic lateral sclerosis (ALS) and fragile X syndrome, is challenging for short-read whole-genome sequencing (WGS) data. A solution to this problem is an important step toward integrating WGS into precision medicine. We developed a software tool called ExpansionHunter that, using PCR-free WGS short-read data, can genotype repeats at the locus of interest, even if the expanded repeat is larger than the read length. We applied our algorithm to WGS data from 3001 ALS patients who have been tested for the presence of the C9orf72 repeat expansion with repeat-primed PCR (RP-PCR). Compared against this truth data, ExpansionHunter correctly classified all (212/212, 95% CI [0.98, 1.00]) of the expanded samples as either expansions (208) or potential expansions (4). Additionally, 99.9% (2786/2789, 95% CI [0.997, 1.00]) of the wild-type samples were correctly classified as wild type by this method with the remaining three samples identified as possible expansions. We further applied our algorithm to a set of 152 samples in which every sample had one of eight different pathogenic repeat expansions, including those associated with fragile X syndrome, Friedreich's ataxia, and Huntington's disease, and correctly flagged all but one of the known repeat expansions. Thus, ExpansionHunter can be used to accurately detect known pathogenic repeat expansions and provides researchers with a tool that can be used to identify new pathogenic repeat expansions. Cold Spring Harbor Laboratory Press 2017-11 /pmc/articles/PMC5668946/ /pubmed/28887402 http://dx.doi.org/10.1101/gr.225672.117 Text en © 2017 Dolzhenko et al.; Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by/4.0/ This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/.
spellingShingle Method
Dolzhenko, Egor
van Vugt, Joke J.F.A.
Shaw, Richard J.
Bekritsky, Mitchell A.
van Blitterswijk, Marka
Narzisi, Giuseppe
Ajay, Subramanian S.
Rajan, Vani
Lajoie, Bryan R.
Johnson, Nathan H.
Kingsbury, Zoya
Humphray, Sean J.
Schellevis, Raymond D.
Brands, William J.
Baker, Matt
Rademakers, Rosa
Kooyman, Maarten
Tazelaar, Gijs H.P.
van Es, Michael A.
McLaughlin, Russell
Sproviero, William
Shatunov, Aleksey
Jones, Ashley
Al Khleifat, Ahmad
Pittman, Alan
Morgan, Sarah
Hardiman, Orla
Al-Chalabi, Ammar
Shaw, Chris
Smith, Bradley
Neo, Edmund J.
Morrison, Karen
Shaw, Pamela J.
Reeves, Catherine
Winterkorn, Lara
Wexler, Nancy S.
Housman, David E.
Ng, Christopher W.
Li, Alina L.
Taft, Ryan J.
van den Berg, Leonard H.
Bentley, David R.
Veldink, Jan H.
Eberle, Michael A.
Detection of long repeat expansions from PCR-free whole-genome sequence data
title Detection of long repeat expansions from PCR-free whole-genome sequence data
title_full Detection of long repeat expansions from PCR-free whole-genome sequence data
title_fullStr Detection of long repeat expansions from PCR-free whole-genome sequence data
title_full_unstemmed Detection of long repeat expansions from PCR-free whole-genome sequence data
title_short Detection of long repeat expansions from PCR-free whole-genome sequence data
title_sort detection of long repeat expansions from pcr-free whole-genome sequence data
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668946/
https://www.ncbi.nlm.nih.gov/pubmed/28887402
http://dx.doi.org/10.1101/gr.225672.117
work_keys_str_mv AT dolzhenkoegor detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT vanvugtjokejfa detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT shawrichardj detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT bekritskymitchella detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT vanblitterswijkmarka detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT narzisigiuseppe detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT ajaysubramanians detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT rajanvani detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT lajoiebryanr detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT johnsonnathanh detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT kingsburyzoya detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT humphrayseanj detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT schellevisraymondd detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT brandswilliamj detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT bakermatt detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT rademakersrosa detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT kooymanmaarten detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT tazelaargijshp detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT vanesmichaela detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT mclaughlinrussell detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT sprovierowilliam detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT shatunovaleksey detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT jonesashley detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT alkhleifatahmad detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT pittmanalan detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT morgansarah detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT hardimanorla detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT alchalabiammar detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT shawchris detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT smithbradley detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT neoedmundj detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT morrisonkaren detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT shawpamelaj detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT reevescatherine detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT winterkornlara detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT wexlernancys detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT housmandavide detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT ngchristopherw detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT lialinal detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT taftryanj detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT vandenbergleonardh detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT bentleydavidr detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT veldinkjanh detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata
AT eberlemichaela detectionoflongrepeatexpansionsfrompcrfreewholegenomesequencedata