Cargando…
HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient
Hi-C is a powerful technology for studying genome-wide chromatin interactions. However, current methods for assessing Hi-C data reproducibility can produce misleading results because they ignore spatial features in Hi-C data, such as domain structure and distance dependence. We present HiCRep, a fra...
Autores principales: | Yang, Tao, Zhang, Feipeng, Yardımcı, Galip Gürkan, Song, Fan, Hardison, Ross C., Noble, William Stafford, Yue, Feng, Li, Qunhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668950/ https://www.ncbi.nlm.nih.gov/pubmed/28855260 http://dx.doi.org/10.1101/gr.220640.117 |
Ejemplares similares
-
HiCRep.py: fast comparison of Hi-C contact matrices in Python
por: Lin, Dejun, et al.
Publicado: (2021) -
Software tools for visualizing Hi-C data
por: Yardımcı, Galip Gürkan, et al.
Publicado: (2017) -
HiC-spector: a matrix library for spectral and reproducibility analysis of Hi-C contact maps
por: Yan, Koon-Kiu, et al.
Publicado: (2017) -
Unsupervised embedding of single-cell Hi-C data
por: Liu, Jie, et al.
Publicado: (2018) -
Measuring the reproducibility and quality of Hi-C data
por: Yardımcı, Galip Gürkan, et al.
Publicado: (2019)