Cargando…
Molecular Docking Analysis of Phytic Acid and 4-hydroxyisoleucine as Cyclooxygenase-2, Microsomal Prostaglandin E Synthase-2, Tyrosinase, Human Neutrophil Elastase, Matrix Metalloproteinase-2 and -9, Xanthine Oxidase, Squalene Synthase, Nitric Oxide Synthase, Human Aldose Reductase, and Lipoxygenase Inhibitors
BACKGROUND: The phytoconstituents phytic acid and 4-hydroxyisoleucine have been reported to posses various biological properties. OBJECTIVE: This prompted us to carry out the docking study on these two ligands (phytic acid & 4-hydroxyisoleucine) against eleven targeted enzymes. MATERIALS AND MET...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669090/ https://www.ncbi.nlm.nih.gov/pubmed/29142407 http://dx.doi.org/10.4103/pm.pm_195_16 |
_version_ | 1783275788905218048 |
---|---|
author | Narayanaswamy, Radhakrishnan Wai, Lam Kok Esa, Norhaizan Mohd |
author_facet | Narayanaswamy, Radhakrishnan Wai, Lam Kok Esa, Norhaizan Mohd |
author_sort | Narayanaswamy, Radhakrishnan |
collection | PubMed |
description | BACKGROUND: The phytoconstituents phytic acid and 4-hydroxyisoleucine have been reported to posses various biological properties. OBJECTIVE: This prompted us to carry out the docking study on these two ligands (phytic acid & 4-hydroxyisoleucine) against eleven targeted enzymes. MATERIALS AND METHODS: Phytic acid & 4-hydroxyisoleucine were evaluated on the docking behaviour of cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-2 (mPGES-2), tyrosinase, human neutrophil elastase (HNE), matrix metalloproteinase (MMP 2 and 9), xanthine oxidase (XO), squalene synthase (SQS), nitric oxide synthase (NOS), human aldose reductase (HAR) and lipoxygenase (LOX) using Discovery Studio Version 3.1 (except for LOX, where Autodock 4.2 tool was used). RESULTS: Docking and binding free energy analysis revealed that phytic acid exhibited the maximum binding energy for four target enzymes such as COX-2, mPGES-2, tyrosinase and HNE. Interestingly, we found that 4-hydroxyisoleucine has the potential to dock and bind with all of the eleven targeted enzymes. CONCLUSION: This present study has paved a new insight in understanding 4-hydroxyisoleucine as potential inhibitor against COX-2, mPGES-2, tyrosinase, HNE, MMP 2, MMP 9, XO, SQS, NOS, HAR and LOX. SUMMARY: 4-hydroxyisoleucine has the potential to dock and bind with all 11targeted enzymes such as (cyclooxygenase-2 [COX-2], microsomal prostaglandin E synthase-2 [mPGES-2], tyrosinase, human neutrophil elastase [HNE], matrix metalloproteinase [MMP-2 and -9], xanthine oxidase, squalene synthase, nitric oxide synthase, human aldose reductase, and lipoxygenase). Moreover, docking studies and binding free energy calculations revealed that phytic acid exhibited the maximum binding energy for four target enzymes such as COX-2, mPGES-2, tyrosinase, and HNE; however, for other six target enzymes, it fails to dock. [Image: see text] Abbreviations used: COX-2: Cyclooxygenase-2, mPGES-2: Microsomal prostaglandin E synthase-2, HNE: Human neutrophil elastase, MMP-2 and -9: Matrix metalloproteinase-2 and -9, XO: Xanthine oxidase, SQS: Squalene synthase, NOS: Nitric oxide synthase, HAR: Human aldose reductase, LOX: Lipoxygenase, ADME: Absorption, distribution, metabolism, and excretion, TOPKAT: Toxicity Prediction by Computer-assisted Technology. |
format | Online Article Text |
id | pubmed-5669090 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-56690902017-11-15 Molecular Docking Analysis of Phytic Acid and 4-hydroxyisoleucine as Cyclooxygenase-2, Microsomal Prostaglandin E Synthase-2, Tyrosinase, Human Neutrophil Elastase, Matrix Metalloproteinase-2 and -9, Xanthine Oxidase, Squalene Synthase, Nitric Oxide Synthase, Human Aldose Reductase, and Lipoxygenase Inhibitors Narayanaswamy, Radhakrishnan Wai, Lam Kok Esa, Norhaizan Mohd Pharmacogn Mag Original Article BACKGROUND: The phytoconstituents phytic acid and 4-hydroxyisoleucine have been reported to posses various biological properties. OBJECTIVE: This prompted us to carry out the docking study on these two ligands (phytic acid & 4-hydroxyisoleucine) against eleven targeted enzymes. MATERIALS AND METHODS: Phytic acid & 4-hydroxyisoleucine were evaluated on the docking behaviour of cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-2 (mPGES-2), tyrosinase, human neutrophil elastase (HNE), matrix metalloproteinase (MMP 2 and 9), xanthine oxidase (XO), squalene synthase (SQS), nitric oxide synthase (NOS), human aldose reductase (HAR) and lipoxygenase (LOX) using Discovery Studio Version 3.1 (except for LOX, where Autodock 4.2 tool was used). RESULTS: Docking and binding free energy analysis revealed that phytic acid exhibited the maximum binding energy for four target enzymes such as COX-2, mPGES-2, tyrosinase and HNE. Interestingly, we found that 4-hydroxyisoleucine has the potential to dock and bind with all of the eleven targeted enzymes. CONCLUSION: This present study has paved a new insight in understanding 4-hydroxyisoleucine as potential inhibitor against COX-2, mPGES-2, tyrosinase, HNE, MMP 2, MMP 9, XO, SQS, NOS, HAR and LOX. SUMMARY: 4-hydroxyisoleucine has the potential to dock and bind with all 11targeted enzymes such as (cyclooxygenase-2 [COX-2], microsomal prostaglandin E synthase-2 [mPGES-2], tyrosinase, human neutrophil elastase [HNE], matrix metalloproteinase [MMP-2 and -9], xanthine oxidase, squalene synthase, nitric oxide synthase, human aldose reductase, and lipoxygenase). Moreover, docking studies and binding free energy calculations revealed that phytic acid exhibited the maximum binding energy for four target enzymes such as COX-2, mPGES-2, tyrosinase, and HNE; however, for other six target enzymes, it fails to dock. [Image: see text] Abbreviations used: COX-2: Cyclooxygenase-2, mPGES-2: Microsomal prostaglandin E synthase-2, HNE: Human neutrophil elastase, MMP-2 and -9: Matrix metalloproteinase-2 and -9, XO: Xanthine oxidase, SQS: Squalene synthase, NOS: Nitric oxide synthase, HAR: Human aldose reductase, LOX: Lipoxygenase, ADME: Absorption, distribution, metabolism, and excretion, TOPKAT: Toxicity Prediction by Computer-assisted Technology. Medknow Publications & Media Pvt Ltd 2017-10 2017-10-11 /pmc/articles/PMC5669090/ /pubmed/29142407 http://dx.doi.org/10.4103/pm.pm_195_16 Text en Copyright: © 2017 Pharmacognosy Magazine http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. |
spellingShingle | Original Article Narayanaswamy, Radhakrishnan Wai, Lam Kok Esa, Norhaizan Mohd Molecular Docking Analysis of Phytic Acid and 4-hydroxyisoleucine as Cyclooxygenase-2, Microsomal Prostaglandin E Synthase-2, Tyrosinase, Human Neutrophil Elastase, Matrix Metalloproteinase-2 and -9, Xanthine Oxidase, Squalene Synthase, Nitric Oxide Synthase, Human Aldose Reductase, and Lipoxygenase Inhibitors |
title | Molecular Docking Analysis of Phytic Acid and 4-hydroxyisoleucine as Cyclooxygenase-2, Microsomal Prostaglandin E Synthase-2, Tyrosinase, Human Neutrophil Elastase, Matrix Metalloproteinase-2 and -9, Xanthine Oxidase, Squalene Synthase, Nitric Oxide Synthase, Human Aldose Reductase, and Lipoxygenase Inhibitors |
title_full | Molecular Docking Analysis of Phytic Acid and 4-hydroxyisoleucine as Cyclooxygenase-2, Microsomal Prostaglandin E Synthase-2, Tyrosinase, Human Neutrophil Elastase, Matrix Metalloproteinase-2 and -9, Xanthine Oxidase, Squalene Synthase, Nitric Oxide Synthase, Human Aldose Reductase, and Lipoxygenase Inhibitors |
title_fullStr | Molecular Docking Analysis of Phytic Acid and 4-hydroxyisoleucine as Cyclooxygenase-2, Microsomal Prostaglandin E Synthase-2, Tyrosinase, Human Neutrophil Elastase, Matrix Metalloproteinase-2 and -9, Xanthine Oxidase, Squalene Synthase, Nitric Oxide Synthase, Human Aldose Reductase, and Lipoxygenase Inhibitors |
title_full_unstemmed | Molecular Docking Analysis of Phytic Acid and 4-hydroxyisoleucine as Cyclooxygenase-2, Microsomal Prostaglandin E Synthase-2, Tyrosinase, Human Neutrophil Elastase, Matrix Metalloproteinase-2 and -9, Xanthine Oxidase, Squalene Synthase, Nitric Oxide Synthase, Human Aldose Reductase, and Lipoxygenase Inhibitors |
title_short | Molecular Docking Analysis of Phytic Acid and 4-hydroxyisoleucine as Cyclooxygenase-2, Microsomal Prostaglandin E Synthase-2, Tyrosinase, Human Neutrophil Elastase, Matrix Metalloproteinase-2 and -9, Xanthine Oxidase, Squalene Synthase, Nitric Oxide Synthase, Human Aldose Reductase, and Lipoxygenase Inhibitors |
title_sort | molecular docking analysis of phytic acid and 4-hydroxyisoleucine as cyclooxygenase-2, microsomal prostaglandin e synthase-2, tyrosinase, human neutrophil elastase, matrix metalloproteinase-2 and -9, xanthine oxidase, squalene synthase, nitric oxide synthase, human aldose reductase, and lipoxygenase inhibitors |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669090/ https://www.ncbi.nlm.nih.gov/pubmed/29142407 http://dx.doi.org/10.4103/pm.pm_195_16 |
work_keys_str_mv | AT narayanaswamyradhakrishnan moleculardockinganalysisofphyticacidand4hydroxyisoleucineascyclooxygenase2microsomalprostaglandinesynthase2tyrosinasehumanneutrophilelastasematrixmetalloproteinase2and9xanthineoxidasesqualenesynthasenitricoxidesynthasehumanaldosereductaseandlipoxygenasein AT wailamkok moleculardockinganalysisofphyticacidand4hydroxyisoleucineascyclooxygenase2microsomalprostaglandinesynthase2tyrosinasehumanneutrophilelastasematrixmetalloproteinase2and9xanthineoxidasesqualenesynthasenitricoxidesynthasehumanaldosereductaseandlipoxygenasein AT esanorhaizanmohd moleculardockinganalysisofphyticacidand4hydroxyisoleucineascyclooxygenase2microsomalprostaglandinesynthase2tyrosinasehumanneutrophilelastasematrixmetalloproteinase2and9xanthineoxidasesqualenesynthasenitricoxidesynthasehumanaldosereductaseandlipoxygenasein |