Cargando…
Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals
We report here that size- and shape-focusing can be achieved through the well-known Ostwald ripening process to produce high-quality metal nanocrystals (NCs). Using Pd as an example, we show that the addition of small NCs of appropriate sizes could help in modulating the growth of larger NCs and ena...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669216/ https://www.ncbi.nlm.nih.gov/pubmed/29449925 http://dx.doi.org/10.1039/c5sc01787d |
_version_ | 1783275816462843904 |
---|---|
author | Zhang, Zhaorui Wang, Zhenni He, Shengnan Wang, Chaoqi Jin, Mingshang Yin, Yadong |
author_facet | Zhang, Zhaorui Wang, Zhenni He, Shengnan Wang, Chaoqi Jin, Mingshang Yin, Yadong |
author_sort | Zhang, Zhaorui |
collection | PubMed |
description | We report here that size- and shape-focusing can be achieved through the well-known Ostwald ripening process to produce high-quality metal nanocrystals (NCs). Using Pd as an example, we show that the addition of small NCs of appropriate sizes could help in modulating the growth of larger NCs and enable excellent control over both the size and shape uniformity of the products. A detailed mechanistic study showed that the self-focusing of Pd NCs relied on a dissolution and regrowth process induced by redox reaction of HCHO. With the assistance of HCHO, injection of small sacrificial nanocrystals (SNCs), with sizes below a critical value, into larger seeds results in the dissolution of the SNCs and subsequent deposition onto the larger ones, thus allowing the formation of monodisperse Pd NCs. We have identified the critical radius of the SNCs to be ∼5.7 nm for Pd, and verified that SNCs with sizes larger than that could not effectively support the growth of larger seeds. More interestingly, since Ostwald ripening involves matter relocation, this synthetic approach could even break the self-termination growth habits of metal NCs and produce nanocrystals with sizes that are not conveniently accessible by direct growth. |
format | Online Article Text |
id | pubmed-5669216 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-56692162018-02-15 Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals Zhang, Zhaorui Wang, Zhenni He, Shengnan Wang, Chaoqi Jin, Mingshang Yin, Yadong Chem Sci Chemistry We report here that size- and shape-focusing can be achieved through the well-known Ostwald ripening process to produce high-quality metal nanocrystals (NCs). Using Pd as an example, we show that the addition of small NCs of appropriate sizes could help in modulating the growth of larger NCs and enable excellent control over both the size and shape uniformity of the products. A detailed mechanistic study showed that the self-focusing of Pd NCs relied on a dissolution and regrowth process induced by redox reaction of HCHO. With the assistance of HCHO, injection of small sacrificial nanocrystals (SNCs), with sizes below a critical value, into larger seeds results in the dissolution of the SNCs and subsequent deposition onto the larger ones, thus allowing the formation of monodisperse Pd NCs. We have identified the critical radius of the SNCs to be ∼5.7 nm for Pd, and verified that SNCs with sizes larger than that could not effectively support the growth of larger seeds. More interestingly, since Ostwald ripening involves matter relocation, this synthetic approach could even break the self-termination growth habits of metal NCs and produce nanocrystals with sizes that are not conveniently accessible by direct growth. Royal Society of Chemistry 2015-09-01 2015-06-18 /pmc/articles/PMC5669216/ /pubmed/29449925 http://dx.doi.org/10.1039/c5sc01787d Text en This journal is © The Royal Society of Chemistry 2015 http://creativecommons.org/licenses/by/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Chemistry Zhang, Zhaorui Wang, Zhenni He, Shengnan Wang, Chaoqi Jin, Mingshang Yin, Yadong Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals |
title | Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals
|
title_full | Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals
|
title_fullStr | Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals
|
title_full_unstemmed | Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals
|
title_short | Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals
|
title_sort | redox reaction induced ostwald ripening for size- and shape-focusing of palladium nanocrystals |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669216/ https://www.ncbi.nlm.nih.gov/pubmed/29449925 http://dx.doi.org/10.1039/c5sc01787d |
work_keys_str_mv | AT zhangzhaorui redoxreactioninducedostwaldripeningforsizeandshapefocusingofpalladiumnanocrystals AT wangzhenni redoxreactioninducedostwaldripeningforsizeandshapefocusingofpalladiumnanocrystals AT heshengnan redoxreactioninducedostwaldripeningforsizeandshapefocusingofpalladiumnanocrystals AT wangchaoqi redoxreactioninducedostwaldripeningforsizeandshapefocusingofpalladiumnanocrystals AT jinmingshang redoxreactioninducedostwaldripeningforsizeandshapefocusingofpalladiumnanocrystals AT yinyadong redoxreactioninducedostwaldripeningforsizeandshapefocusingofpalladiumnanocrystals |