Cargando…
Angstrom-scale flatness using selective nanoscale etching
The realization of flat surfaces on the angstrom scale is required in advanced devices to avoid loss due to carrier (electron and/or photon) scattering. In this work, we have developed a new surface flattening method that involves near-field etching, where optical near-fields (ONFs) act to dissociat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669236/ https://www.ncbi.nlm.nih.gov/pubmed/29114444 http://dx.doi.org/10.3762/bjnano.8.217 |
_version_ | 1783275820622544896 |
---|---|
author | Yatsui, Takashi Saito, Hiroshi Nobusada, Katsuyuki |
author_facet | Yatsui, Takashi Saito, Hiroshi Nobusada, Katsuyuki |
author_sort | Yatsui, Takashi |
collection | PubMed |
description | The realization of flat surfaces on the angstrom scale is required in advanced devices to avoid loss due to carrier (electron and/or photon) scattering. In this work, we have developed a new surface flattening method that involves near-field etching, where optical near-fields (ONFs) act to dissociate the molecules. ONFs selectively generated at the apex of protrusions on the surface selectively etch the protrusions. To confirm the selective etching of the nanoscale structure, we compared near-field etching using both gas molecules and ions in liquid phase. Using two-dimensional Fourier analysis, we found that near-field etching is an effective way to etch on the scale of less than 10 nm for both wet and dry etching techniques. In addition, near-field dry etching may be effective for the selective etching of nanoscale structures with large mean free path values. |
format | Online Article Text |
id | pubmed-5669236 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Beilstein-Institut |
record_format | MEDLINE/PubMed |
spelling | pubmed-56692362017-11-07 Angstrom-scale flatness using selective nanoscale etching Yatsui, Takashi Saito, Hiroshi Nobusada, Katsuyuki Beilstein J Nanotechnol Full Research Paper The realization of flat surfaces on the angstrom scale is required in advanced devices to avoid loss due to carrier (electron and/or photon) scattering. In this work, we have developed a new surface flattening method that involves near-field etching, where optical near-fields (ONFs) act to dissociate the molecules. ONFs selectively generated at the apex of protrusions on the surface selectively etch the protrusions. To confirm the selective etching of the nanoscale structure, we compared near-field etching using both gas molecules and ions in liquid phase. Using two-dimensional Fourier analysis, we found that near-field etching is an effective way to etch on the scale of less than 10 nm for both wet and dry etching techniques. In addition, near-field dry etching may be effective for the selective etching of nanoscale structures with large mean free path values. Beilstein-Institut 2017-10-18 /pmc/articles/PMC5669236/ /pubmed/29114444 http://dx.doi.org/10.3762/bjnano.8.217 Text en Copyright © 2017, Yatsui et al. https://creativecommons.org/licenses/by/4.0https://www.beilstein-journals.org/bjnano/termsThis is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms) |
spellingShingle | Full Research Paper Yatsui, Takashi Saito, Hiroshi Nobusada, Katsuyuki Angstrom-scale flatness using selective nanoscale etching |
title | Angstrom-scale flatness using selective nanoscale etching |
title_full | Angstrom-scale flatness using selective nanoscale etching |
title_fullStr | Angstrom-scale flatness using selective nanoscale etching |
title_full_unstemmed | Angstrom-scale flatness using selective nanoscale etching |
title_short | Angstrom-scale flatness using selective nanoscale etching |
title_sort | angstrom-scale flatness using selective nanoscale etching |
topic | Full Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669236/ https://www.ncbi.nlm.nih.gov/pubmed/29114444 http://dx.doi.org/10.3762/bjnano.8.217 |
work_keys_str_mv | AT yatsuitakashi angstromscaleflatnessusingselectivenanoscaleetching AT saitohiroshi angstromscaleflatnessusingselectivenanoscaleetching AT nobusadakatsuyuki angstromscaleflatnessusingselectivenanoscaleetching |