Cargando…
c-Met, CREB1 and EGFR are involved in miR-493-5p inhibition of EMT via AKT/GSK-3β/Snail signaling in prostate cancer
miR-493-5p downregulation has emerged as a critical player in cancer progression yet, the underlying mechanisms of miR-493-5p expression pattern and its function in prostate cancer remains to be elucidated. Here, we illustrate that miR-493-5p is frequently downregulated in prostate cancer, at least...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5669891/ https://www.ncbi.nlm.nih.gov/pubmed/29137265 http://dx.doi.org/10.18632/oncotarget.19398 |
Sumario: | miR-493-5p downregulation has emerged as a critical player in cancer progression yet, the underlying mechanisms of miR-493-5p expression pattern and its function in prostate cancer remains to be elucidated. Here, we illustrate that miR-493-5p is frequently downregulated in prostate cancer, at least partially due to altered DNA methylation. miR-493-5p functions as a tumor suppressor in prostate cancer cells. c-Met, CREB1 and EGFR are downstream target genes of miR-493-5p. miR-493-5p inhibits EMT via AKT/GSK-3β/Snail signaling in prostate cancer. Taken together, our study identified c-Met, CREB1, EGFR and miR-493-5p establish a regulatory loop in prostate cancer, which could prove useful in the development of effective and therapies against prostate cancer. |
---|