Cargando…
Translational utility of a hierarchical classification strategy in biomolecular data analytics
Hierarchical classification (HC) stratifies and classifies data from broad classes into more specific classes. Unlike commonly used data classification strategies, this enables the probabilistic prediction of unknown classes at different levels, minimizing the burden of incomplete databases. Despite...
Autores principales: | Galea, Dieter, Inglese, Paolo, Cammack, Lidia, Strittmatter, Nicole, Rebec, Monica, Mirnezami, Reza, Laponogov, Ivan, Kinross, James, Nicholson, Jeremy, Takats, Zoltan, Veselkov, Kirill A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5670129/ https://www.ncbi.nlm.nih.gov/pubmed/29101330 http://dx.doi.org/10.1038/s41598-017-14092-7 |
Ejemplares similares
-
ChemDistiller: an engine for metabolite annotation in mass spectrometry
por: Laponogov, Ivan, et al.
Publicado: (2018) -
BASIS: High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology
por: Veselkov, Kirill, et al.
Publicado: (2018) -
Exploiting and assessing multi-source data for supervised biomedical named entity recognition
por: Galea, Dieter, et al.
Publicado: (2018) -
HyperFoods: Machine intelligent mapping of cancer-beating molecules in foods
por: Veselkov, Kirill, et al.
Publicado: (2019) -
Deep learning and 3D-DESI imaging reveal the hidden metabolic heterogeneity of cancer
por: Inglese, Paolo, et al.
Publicado: (2017)