Cargando…
Dissipative generation of significant amount of mechanical entanglement in a coupled optomechanical system
We propose an approach for generating steady-state mechanical entanglement in a coupled optomechanical system. By applying four-tone driving lasers with weighted amplitudes and specific frequencies, we obtain an effective Hamiltonian that couples the delocalized Bogoliubov modes of the two mechanica...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5670165/ https://www.ncbi.nlm.nih.gov/pubmed/29101336 http://dx.doi.org/10.1038/s41598-017-15032-1 |
Sumario: | We propose an approach for generating steady-state mechanical entanglement in a coupled optomechanical system. By applying four-tone driving lasers with weighted amplitudes and specific frequencies, we obtain an effective Hamiltonian that couples the delocalized Bogoliubov modes of the two mechanical oscillators to the cavity modes via beam-splitter-like interactions. When the mechanical decay rate is small, the Bogoliubov modes can be effectively cooled by the dissipative dynamics of the cavity modes, generating steady-state entanglement of the mechanical modes. The mechanical entanglement obtained in the stationary regime is strongly dependent on the values of the ratio of the effective optomechanical coupling strengths. Numerical simulation with the full linearized Hamiltonian shows that significant amount of mechanical entanglement can indeed be obtained by balancing the opposing effects of varying the ratio and by carefully avoiding the system parameters that may lead to amplified oscillations of the mechanical mean values detrimental to the entanglement generation. |
---|